VEGETATION TYPES OF NEPAL (A report based on review of literature and expert knowledge) **GOVERNMENT OF NEPAL** MINISTRY OF FORESTS AND ENVIRONMENT FOREST RESEARCH AND TRAINING CENTRE Ecosystem and Forest Types Mapping Program (EFTMP) October 2021 ### **Published by** **Government of Nepal** Ministry of Forests and Environment Forest Research and Training Centre Ecosystem and Forest Types Mapping Program (EFTMP) Telephone: 977-1-5320482 Email: twg.frtc@gmail.com Website: https://frtc.gov.np Babarmahal, Kathmandu ### Copyright @ 2021 Forest Research and Training Centre (FRTC) This publication may be used for educational and non-profit purposes, provided acknowledgement of the source is accurately made. ### Prepared by Dr. Keshab Raj Goutam, Technical Advisor, EFTMP Dr. Sunil Sharma, International Expert, EFTMP #### **Contributors/Reviewers** Mr. Amul Kumar Acharya, Assistant Research Officer, FRTC Mr. Bimal Kumar Acharya, Ecosystem Mapping Coordinator, EFTMP Dr. Chet Raj Upreti, Rangeland Specialist, EFTMP Mr. Yam Prasad Pokharel, Director General, FRTC Dr. Shanta Raj Jnawali, WWF Nepal Dr. Bimal Raj Regmi, PIF, OPM Mr. Dhirendra Kumar Pradhan, Deputy Director General, FRTC #### Date of publication First date of publication: October 2021 #### Supported by British Embassy Kathmandu (BEK), Policy and Institutions Facility (PIF), Oxford Policy Management (OPM) USAID Hariyo Ban Program, WWF Nepal #### Citation FRTC (2021). Vegetation Types of Nepal: a report based on review of literature and expert knowledge. EFTMP Technical Working Document, No. 2. Ecosystem and Forest Types Mapping Program (EFTMP), Forest Research and Training Centre (FRTC). Kathmandu, Nepal. Cover photo: Bimal Kumar Acharya **Design: DESIGN CHAUTARI** Ananmagar, Kathmandu, 01-5705980 # **TABLE OF CONTENTS** | 1. | Introduction | | | | | |------|--|--|----|--|--| | 2. | A review of the past vegetation assessments in Nepal | | | | | | | 2.1 | Stainton (1972) | 3 | | | | | 2.2 | Dobremez et al. (1970-1985) | 11 | | | | | 2.3 | Jackson (1994) | 26 | | | | | 2.4 | Biodiversity Profiles Project (1996) | 28 | | | | | 2.5 | TISC (2002) | 33 | | | | | 2.6 | DFRS (2014, 2015) | 39 | | | | | 2.7 | Miehe et al. (2015) | 43 | | | | 3. | Inte | national Vegetation classification (IVC) | 57 | | | | 4. | Impl | ications of the past vegetation classification and IVC for EFTMP | 61 | | | | 5. | Classification of Nepal's Vegetation | | | | | | | 5.1 | Vegetation classification approach | 64 | | | | | 5.2 | Nomenclature of vegetation types | 65 | | | | | 5.3 | Proposed vegetation types | 67 | | | | 6. | Con | clusion | 75 | | | | Refe | erences | | 76 | | | | Ann | ex 1: T | he proposed EFTMP vegetation types and their equivalents in the past assessments | 78 | | | # **LIST OF TABLE** | Table | 1: Survey routes followed while carrying out vegetation survey by Stainton (1972) | 4 | |-------|--|----| | Table | 2: Climatic and vegetational divisions of Nepal described by Stainton (1972) | 5 | | Table | 3: Forest types in Nepal as described by Stainton (1972) | 6 | | Table | 5: Vegetation types in Nepal as described by Dobremez (1976) | 13 | | Table | 6: Vegetation types in Nepal as described by Jackson (1994) | 26 | | Table | 7: Ecosystem types in Nepal as described by BPP (1996) | 28 | | Table | 8: Life zones in Nepal as described by TISC (2002) | 33 | | Table | 9: Vegetation types in Nepal as described by TISC (2002) | 34 | | Table | 10: Forest types in Nepal as described by DFRS (2014) | 40 | | Table | 11: Forest types in Nepal identified through the analysis of FRA data | 42 | | Table | 12: Classification of vegetation formations by Miehe et al. (2015) | 45 | | Table | 13: Vegetation types in Nepal as described by Miehe et al. (2015) | 46 | | Table | 14: Eight hierarchy levels of the International Vegetation Classification (IVC) (Source: Faber- | | | | Langendoen et al. 2014) | 57 | | Table | 15: Formation level units, Level 1 to Level 3 based on EcoVeg's global vegetation classification | 59 | | Table | 16: Some vegetation types with specific areas of their distribution | 63 | | Table | 17: Formation levels 1 to 3 applicable to Nepal based on EcoVeg's vegetation classification | 64 | | Table | 18: Proposed vegetation typology for the forest and grassland type mapping | 67 | | | | | # **LIST OF FIGURES** | Figure | 1: Dobremez Ecology Map of Nepal digitized by ICIMOD (2003) | 25 | |--------|---|----| | Figure | 2: Iso-potential vegetation map of Nepal (TISC 2002) | 39 | | Figure | 3: Forest type map of Nepal (DFRS 2015) | 42 | ## 1. Introduction Ecosystem and Forest types Mapping Program (EFTMP) aims to generate a spatially explicit map of terrestrial ecosystems encompassing forest, grassland and agriculture and wetland ecosystems using the standardized ecosystem mapping procedures. Since an ecosystem is usually defined by a vegetation type in combination with other environmental parameters (Sayre et al. 2013), mapping of vegetation types is a prerequisite for ecosystem mapping. Further, vegetation classification is a prerequisite for mapping vegetation types. Therefore, EFTMP requires a seamless vegetation classification accurately representing the geographic distribution to deliver Nepal's ecosystem map. Vegetation has been a significant focus of ecological study to explore the correlation and interaction between the vegetation types and their natural environment to understand their relationships and offer informed decision making for conservation and management of the natural resources (Addicott et al. 2021; Schwienfurth 1992). The ecologists/vegetation scientists classified the vegetation based on the qualitative and quantitative methods (Mucina 1997). The vegetation classification approaches generally apply field observations to categorise vegetation (e.g. Gellie et al. 2018) based on physiognomy, structure and floristic pattern/compositions, and ecological conditions attributing particular vegetation formation (Faber-Langendoen et al. 2016). The scale, field data collection protocol, and analytical methods largely determine the vegetation classification (e.g. Singers and Rogers 2014; Nemani and Running 1996). Hence, the inconsistencies are inherent between various vegetation classification approaches between the jurisdictions (Gellie et al., 2018) and the countries (Faber-Langendoen et al., 2016). In this context, the International Vegetation Classification (IVC) has been developed based on the ecological vegetation (EcoVeg) classification approach, providing a comprehensive and consistent framework for multi-scale classification of all vegetation diversity across the world (Faber-Langendoen et al. 2020, 2017, 2016). In Nepal, vegetation classification has a long history dated back to the 1950s. Schwienfurth (1957) studied Nepal's vegetation in the context of vegetation mapping of the Himalaya to explore the natural environment and the habitats in the mountain system through consolidating the personal observations of the botanical explorers (Schwienfurth 1957, 1992). Stainton (1972) and Dobremez (1976) extensively studied Nepal's ecology and vegetation and identified the forest and vegetation types occurring in varying physiographic and climatic conditions. Further, Dobremez and his colleagues (1969-1985) manually produced seven cartographic ecological maps based on field observations identifying the potential vegetation types across the country (TISC 2002). In 2015, Miehe et al. (2015) analyzed the field observations and photos over the period of four decades and provided vegetation types for Nepal. However, Jackson (1994), BPP (1996) and TISC (2002) synthesized vegetation/ecosystem/forest types based on the earlier classifications by Stainton (1972) and Dobremez and his colleagues (1969-1985). Uddin et al. (2015) and the DFRS (2014, 2015) consolidated the vegetation/forest types into limited numbers for remote sensing analysis of land cover, whereas several studies classified vegetation at local or subnational scales for the respective study sites (Byers et al. 2014; Shrestha 2008). Nepal's vegetation classification has not been reviewed and updated after Dobremez and his colleagues (1969-1985) using the ground data and information on the vegetation formation, species composition, growth form and floristic pattern. In addition, the inconsistent reporting of the vegetation types in Nepal has demonstrated a need for a comprehensive vegetation classification of Nepal, building on the past knowledge through new field data collection and consultation with and review by experts to provide a complete list of vegetation types. Furthermore, the vegetation classification should comply with the IVC approach. This report reviews how various assessments classified and mapped vegetation types in Nepal in the past. Based on the review of the past vegetation classifications, the field data from the secondary sources (i.e., FRA) and experts' knowledge, Nepal's vegetation classification is proposed using the vegetation characteristics based on physiognomic-floristic-ecological classification approach consistent with the IVC. # 2. A review of the past vegetation assessments in Nepal Until the 1950s, vegetation assessment in Nepal was generally focused on botanical exploration, limiting it to the collection and identification of individual plant species. According to Stainton (1972), F. Buchanan Hamilton and N. Wallich, who came to Nepal as mountaineer parties, were the earliest explorers of Nepalese plants. They collected plants around Kathmandu valley and on the route up from the Indian plains to Kathmandu before 1949. O. Polunin in 1949 and D. G. Lowndes in 1950 collected plants from
Langtang, Rasuwa Gadi and Chilime Khola area and Marsyangdi valley and Manang area, respectively, and provided them to the Herbarium of the British Museum. In 1952, the British Museum and the UK's Royal Horticultural Society jointly sponsored the first botanical exploration expedition involving O. Polunin, W. Sykes, and L. H. J. Williams. The second expedition took place in 1954, which comprised a team of J. D. A. Stainton, W. Sykes, and L. H. J. Williams. These two expeditions collected a large number of plant specimens from many parts of Nepal, such as from southwards to Butwal and northwards to Mustang, making a total of over 17,500 plant collections (including the previous ones collected by Polunin and Lowndes) in the Herbarium of the British Museum. Later in 1956, Stainton also collected plant specimens from Arun and Tamur valleys. The assessment of vegetation as a plant community started with J. D. A. Stainton's work between 1962 and 1969. In these years, he visited different parts of Nepal mainly for what he calls "ecological observations" rather than plant collection as in his previous visits (Stainton 1972, p. 3). The notes taken during these observations resulted in his book "Forests of Nepal" published in 1972. This book is considered as the first systematic classification of Nepal's vegetation. Since then, several studies have been conducted at different scales to classify Nepal's vegetation types. The section below compiles the major classifications of Nepal's vegetation to date. ### 2.1 Stainton (1972) Stainton (1972) classified Nepal's forest types based on his field observations carried out between 1962 and 1969. During these eight years, he effectively spent two and half years in the field. He made a total of 17 visits to many randomly selected transects in different parts of Nepal from the far east to far west and southern plains to high Himalayas to the north. Table 1 presents the routes Stainton followed during the survey. He surveyed some regions more than once but did not provide the exact reasons. However, it may be attributed to better understanding the vegetation phenology and seasonal variability. Table 1: Survey routes followed while carrying out vegetation survey by Stainton (1972) | SN | Dates | Region | Survey routes | | |----|--------------------------|---------------------|---|--| | 1 | 10 Apr – 10
Aug, 1962 | Central | Langtang, Chilime, Satsae Khola to the south of Ganesh Himal –
Gosaikund – Melamchi – Kathmandu; Satsae Khola to Prok on the upper
Budhi Gandaki – Chilime – Langtang – Ganja La - Kathmandu | | | 2 | 7 Apr – 30
Jul, 1963 | West | Nepalgunj – Rapti Valley – Dang – Jajarkot – Kaigaon on the Jagdula
Khola – Jumla – Rara – Maharigaon – Tibrikot – Dunaihi – Ringmo – Sya
Gompa – Phijor – Ccharka – Tarap – Dunaihi – Mukut – Tukhucha –
Pokhara | | | 3 | 5 Apr – 26
Jul, 1964 | Central
and East | Kathmandu – Chaunrikharka – Thyangboche – Inukhu khola – Salpa
Bhanjyang – head of Solu, Likhu and Khimti Kholas – Chaunrikharka –
Rolwaling – Jatapokhari – Panch Pokhari – Jiri | | | 4 | 17 Apr – 1
Jul, 1965 | Far west | Dhangarhi – Silgarhi Doti – Khaptad – Chainpur on the Seti river;
Chainpur – Kali Gad – Chainpur (westward circuit) – Manakot – Karnali
river – Talkot – Chainpur (eastward circuit) – Kaligad – Marma on the
upper Chamelia River – Baitadi – Pithoragarh (India) | | | 5 | 12 Sep - 3
Oct, 1965 | Central | Trishuli – Satsae khola – Gatlang – Langtang – Trishuli valley -
Kathmandu | | | 6 | 8-21 Mar,
1966 | Central | East Rapti valley – Hetauda, Amlekhgunj, Narayangarh | | | 7 | 16 May – 1
Aug, 1966 | West | Pokhara – Dhorpatan – Jang La – Tibrikot – Jumla – Rara Lake –
Maharigaon – Kaigaon – Gotam – south side of Hiunchuli Patan
– Toridwari Bhanjyang – Ringmo – Sya Gompa – Tarap – Ccharka –
Tukucha - Pokhara | | | 8 | 5-21 Feb,
2067 | Central | Godavari – Hariharpur Garhi – Dungrebas – Chisapani on the Kamala
Khola - Janakpur | | | 9 | 5-14 Mar,
1967 | East | Dharan – west to confluence of Koshi, Arun and Tamur rivers – east along the Mahabharat lekhs – down to the plains at Dangi - Dharan | | | 10 | 29 Mar – 28
May, 1967 | East and
Central | Bhadrapur – Ilam – Chyangtapu – Yampodin – Hellok – Taplejung
– Chainpur – crossed Arun at Num – Cchoyang – Salpa Bhanjyang –
Chaunrikharka on the Dudh Koshi river | | | 11 | 21-28 Aug,
1967 | Central | East Rapti valley – Hetauda, Amlekhgunj, Narayangarh | | | 12 | 1-23 Sep,
1967 | East | Dharan – Dhankuta – northward along the ridge to Milke Danda –
Terhathum – Rakshi Danda (crossing Tamur) – down to Bhavar range –
Dharan | | | 13 | 27 Sep - 29
Oct, 1967 | Central | Kathmandu – Trisuli – Satsae khola – crossed Budhigandaki at Khorlak –
Barpak – Rupina La – Sisaghat – Lamjung Himal - Pokhara | | | 14 | 7 Mar – 12
Apr, 1968 | West | Nepalgunj – Surkhet – up the Karnali valley to Raskot – Punge Lekh
into the Tila khola – Sam La into Sama khola – Jajarkot – Bheri valley -
Nepalgunj | | | 15 | 26 Apr – 17
Jul, 1968 | West | Pokhara – Lamjung Himal; Pokhara – Dhorpatan – cross the Bheri at
Gotam – Hurta – Munigaon – Bundi Lagna – Rara lake – down to Karnali
(crossed at Khater khola) – up to Munya pass – Simikot – Chankheli
pass – Mugu – Sisne Himal – Maharigaon – Kaigaon – Tibrikot – Tarakot
– Jang La – Dhorpatan - Pokhara | | | SN | Dates | Region | Survey routes | |----|--------------------------|------------------|---| | 16 | 15 Feb - 28
Mar, 1969 | East | Dharan – eastward along the Mahabharat lekh – down to Mai khola –
Sanichari – Mechikhola – west side of Singhalila ridge – Sandakphu –
Ilam – Soktim – Mai khola – Dharan | | 17 | 9 Sep – 9
Nov, 1969 | Central and East | Khumbu – Thyangboche – Everest basecamp; Khumbu – Aiselukharka –
Halesi – Udayapur Garhi – down eastward to Trijuga khola – Dharan | Source: Stainton (1972) Stainton identified nine regions/sub-regions across Nepal based on climatic and vegetation parameters and later used to classify Nepal's forest types (Table 2). Table 2: Climatic and vegetational divisions of Nepal described by Stainton (1972) | SN | Area | Description | |----|---|--| | 1 | Terai, Bhabar, Dun
valleys, and outer
foothills | Terai is a part of the Gangetic plains between the outermost foothills and the Indian frontier. Bhabar is the gently sloping land formed of alluvial gravels washed down from the foothills and accumulated at their base. Dun valleys (bhitri madhesh) are the gently sloping valleys within the outer foothills. Outer foothills are Siwaliks or Chure hills. | | 2 | The West Midlands | Areas that lie between the outer foothills and the main snow ranges to the west of the Kali Gandaki | | 3 | The East Midlands | Areas that lie between the outer foothills and the main snow ranges to east of the Arun-Koshi watershed | | Λ | The Central Areas that lie between the outer foothills and the main snow ranges be | | | 5 | Country to the south of Annapurna and Himal Chuli
This is Pokhara area, a part of Central Midlands, but has been described separately as the vegetation here is different than other parts due to | | | 6 | The Humla –
Jumla area | The area bounded to the south by the long chain of lekhs, lying north of Jajarkot and Dailekh and extending between the Bheri and Karnali rivers | | 7 | Dry river valleys | Valleys in upper parts of big rivers, such as the Bhote Koshi (Rongsha Chu), the Bheri and the Karnali, which are dry due to strong upward winds | | 8 | Inner valleys | Valleys lying within the main Himalayan ranges that get significantly less monsoon rainfall than the similar altitudes on the southern sides of these ranges, such as Kambachen, Yangma and Walungchung valleys at the head of the Tamur, the Thudam and Barun valleys on the Arun, Khumbu, Rolwaling, and Langtang (the Trisuli eastwards), and the upper Bheri and upper Kali Gandaki (the Trisuli westwards). | | 9 | The arid zone | The treeless areas north of Dhaulagiri and Annapurnal Himal, i.e. Dolpo,
Mustang, and Manang | Source: Stainton (1972) ### **Vegetation types** Stainton (1972) classified Nepal's forest into 35 main types, with two sub-types for each of Sal Forest and *Schima-Castanopsis* Forest. The term 'forest' is broadly used to represent all forms of woodlands and scrubs excluding grasslands. The classification largely followed Champion (1936), and Osmaston (1927) in the western Nepal's case. The naming of forest type applied a combination of the physiographic region (Bhabar, Terai), tree characteristics (deciduous and evergreen; broadleaf and conifer), climatic region (tropical, subtropical, temperate and alpine) and the dominant species. The distribution of each forest type has been described in terms of their occurrence in physiographic regions and other environmental parameters, including elevation, slope, and moisture condition. The species association of each forest type has been described providing the lists of species in the canopy, second storey and the under-storey layers observed in some locations. Table 3 presents forest types described by Stainton (1972). Table 3: Forest types in Nepal as described by Stainton (1972) | SN | Forest Type | Distribution | Species association | |------|--|--|--| | Trop | oical and Subtropic | al | | | 1 | Sal forest | | | | 1.1 | Bhabar and terai
Sal forest | In most of the
bhabar and terai
region | Canopy: Shorea robusta, Terminalia myriocarpa, T. Chubula, T. belerica, T. tomentosa, Anogeisus latifolia, Adina cordifolia, Lagerstroemia parviflora, Eugenia jambolana, Lannea grandis Second storey: Mallotus phillippinensis, Semecarpus anacardium, Dillenia pentagyna, Ehretia laevis, Croton oblongifolius, Litsea salicifolia | | 1.2 | Hill Sal forest | Up to 3500 ft,
wetter faces in
west, and dry south
faces in central and
east | Canopy: Shorea robusta, Lagerstroemia parviflora, Anogeisus latifolia, Adina cordifolia, Bauhinia variegate, Dillenia pentagyna, Buchanania latifolia Second storey: Nyctanthes arbortristis, Kydia calycina, Leucomeris spectabilis, Glochidion velutinum, Symplocos racemosa | | 2 | Tropical
deciduous
riverain forest | Along streams of
the Bhabar and dun
valleys | Canopy: Bombax ceiba, Adina cordifolia, Schleichera
trijuga, Holoptlea integrifolia, Lannea grandis, Ehretia laevis,
Lagerstroemia parviflora, Sterculia villosa, Sapium insigne,
Garuga pinnata, Trewia nudiflora, Eugenia jambolana, Acacia
catechu, Albizzia procera | | | | | Second storey: Mallotus phillippinensis, Croton oblongifolius, C. caudatus, Holarrhena antidysenterica, Streblus asper, Cassia fistula, Aporosa diocia, Bridelia retusa, Alangium salviifolium | | 3 | Tropical
evergreen forest | Below 3000 ft, in damp and shady sites, i.e. along water courses, in the terai, bhabar, dun valleys and outer foothills, usually surrounded by Sal forests | Canopy: Eugenia jambolana, Phoebe lanceolata, Mangifera
sylvatica, Diospyros species, Machilus villosa, Acer
oblongum, Cedrela toona, Albizzia species, Michelia
champaca, Garuga pinnata, Duabanga sonneratiodes,
Acrocarpus fraxinifolius | | | | | Second storey: Actinodaphne obovate, Litsea polyantha,
Eriobotrya elliptica, Ehretia wallichiana, Ostodes paniculata,
Olea glandulifera, Mallotus phillippinensis, Bischofia
javanica, Murraya exotica, Sageretia oppositifolia | | SN | Forest Type | Distribution | Species association | |-----|---|--|---| | 4 | Subtropical
evergreen forest | In 3000-5500 ft, in
high rainfall area on
the outer foothills
between the Koshi
and the Mechi
rivers | Canopy: Eugenia tetragona, E. ramosissima, Acer oblungum, Acer thomsonii, Machilus villosa, Castanopsis indica, C. tribuloides, Phoebe lanceolata, Cinnamomum species, Turpinia nepalensis, Bassia butyracea, Lithocarpus spicata, Alnus nepalensis, Cedrela toona, Albizzia species Second storey: Ostodes paniculata, Leucosceptrum canum, Eurya acuminata, Talauma hodgsonii, Symplocos spicata, Mahonia napaulensis, Casearia graveolens | | 5 | <i>Terminalia</i> forest | Bhabar and dun
valleys of the
central and eastern
part (Rapti valley);
hills (the Bheri
valley) | Terminalia myriocarpa (east and central), T. tomentosa
(western hills), T. Chebula, T. belerica, Eugenia jambolana,
Lagerstroemia parviflora, Dillenia pentagyna, Adina
cordifolia, Cedrela toona | | 6 | Dalbergia
sissoo-Acacia
catechu forest | On new alluvium along the streams in the bhabar and dun valleys | Canopy: Acacia catechu, Dalbergia sissoo (frequently pure forests of each species) Second storey: Pogostemon plectranthoides, Colebrookea oppositifolia | | 7 | Subtropical
deciduous hill
forest | In southern slopes
of outer foothills
up to 4000 ft, and
in midlands up the
river valleys, more
abundant in the
west than east | Canopy: Anogeissus latifolia, Lagerstroemia parviflora, Adina cordifolia, Dalbergia latifolia, Ehretia laevis, Terminalia tomentosa, Flacourtia indica, Lannea grandis, Bauhinia variegata, Ougeinia dalbergiodes, Alangium salviifolium, Mallotus philippinensis Second storey: Woodforbia fruticose, Rhus parviflora, Alangium salviifolium, Butea minor, Phoenix humilis | | 8 | Schima-Castanop | sis forest | Thangian carrinonani, batea minoi, i nocinx hannio | | 8.1 | Schima wallichii-
Castanopsis
indica forest | astanopsis 5000 ft around | Canopy at Higher range: Schima wallichii, Castanopsis indica, Bombax ceiba, Terminalia chebula, Eugenia jambolana; Canopy at Lower range: Shima wallichii, Castanopsis indica, | | | | | Ilex doniana, Engelhardtia spicata Second storey: Macaranga pustulata, Rhus succedanea, Mallotus philippinensis | | | Schima wallichii-
Castanonsis | in the Arun and buloides Tamur valleys, | Canopy: Schima wallichii, Castanopsis tribuloides, C. indica,
Engelhardtia spicata, Alnus nepalensis, Lithocarpus spicata,
Quercus glauca, Carpinus viminea, Eugenia frondosa | | 8.2 | tribuloides
forest | | Second storey: Callicarpa arborea, Wightia speciosissima, Macaranga denticulate, Helicia erratica, Rhododendron arboretum, Lyonia ovalifolia, Rhus semialata, Rhus succedanea, Wendlandia species | | SN | Forest Type | Distribution | Species association | |-----|---|---|--| | 9 | Subtropical
semi-evergreen
forest | 2000-5500 ft, at
the base of big
mountains, mainly
side valleys of
the Arun and
Tamur, and around
Pokhara | Canopy: Schima wallichii, Castanopsis indica, C. tribuloides, Dalbergia hircina, Albizzia mollis, A. lucida, A. chinensis, Cedrela toona, Erythrina suberosa, Duabanga sonneratiodes, Macaranga pustulata, Eugenia species Second storey: Ostodes paniculata, Macaranga pustulata, M. denticulate, Mallotus nepalensis, Pandanus furcatus, Talauma hodgsonii, Bischofia javanica, Cyathea spinulosa | | 10 | Pinus roxburghii
forest | 3000-6500 ft, but
as low as 1500 ft
in outer foothills,
also up to 9000 ft
in Karnali, rare in
the east | Canopy: Pinus roxburghii (almost pure), Second storey: Inula cappa, Woodforbia fruticosa | | Tem | perate and alpine | broadleaved | | | 11 | Quercus
incana-Quercus
lanuginosa
forest | 4000-8000 ft,
abundant in West,
only on south faces
in
Central, a few
patches in the Arun, | Canopy: Quercus incana (Syn.: Q. leucotrichophora), Q. lanuginosa (Syn.: Q. lanata), Second storey: Rhododendron arboretum, Lyonia ovalifolia, Rhus wallichii, Carpinus viminea, Myrica esculenta, Ilex | | | | Tamur valleys | dipyrena, Cornus capitata | | 12 | Quercus dilatata
forest | 7000-9500 ft, north or west faces with damp soil, common in West (rare in pure form) | Canopy: Quercus dilatata (Syn.: Q. floribunda), Aesculus indica, Ilex dipyrena, Alnus nepalensis, Juglans regia, Acer species, Quercus incana, Q. semecarpifolia, Tsuga Dumosa, Abies pindrow, Betula alnoides Second storey: Symplocos species, Neolitsea umbrosa, | | | | | Lindera pulcherrima, Rhododendron arboretum, Lyonia
ovalifolia, Sourbus cuspidate, Prunus cornuta | | | Quercus | vercus 8000-1000 ft, on | Canopy: Quercus semecarpifolia, Pinus excelsa | | 13 | semecarpifolia
forest | south face, mainly
West | Second storey: Rhododendron arboretum, Lyonia ovalifolia, Acer species | | | Castanopsis
tribuloides- | 6000-7000 ft, in | Canopy: Castanopsis tribuloides, Castanopsis hystrix,
Quercus lamellose | | 14 | Castanopsis
hystrix forest | astanopsis East | Second storey: Lindera pulcherrima, Neolitsea umbrosa,
Machilus odoratissima, Symplocos species, Rhododendron
arboreum | | | | 6500-8000 ft,
ridges in upper
Arun and Tamur | Canopy: Quercus lamellosa, Q. Lineata, Castanopsis tribuloides | | 15 | Quercus
lamellosa forest | and southern
slopes of Himal
Chuli and
Annapurna | Second storey: Ilex sikkimensis, Ilex dipyrena, Litsea elongate, Machilus duthiei, Acer species, Lyonia ovalifolia, Rhododendron arboretum, Daphniphyllum himalayense, Prunus nepalensis | | | | | | | S | SN | Forest Type | Distribution | Species association | |---|----|--|---|--| | 1 | 6 | Lithocarpus
pachyphylla | | Canopy: Lithocarpus pachyphylla, Quercus lamellosa, Q. lieata Second eteropy lloy dipyropa lloy eikkimonoia Magnelia | | | | forest | | Second storey: Ilex dipyrena, Ilex sikkimensis, Magnolia campbellii, Acer campbellii, Rhododendron grande, R. falconeri, Taxus species | | | | | | West midlands: Canopy - Aesculus indica, Juglans regia,
Acer caessium, Betula alnoides, Alnus nepalensis, Quercus
dilatata, Q. semecarpifolia, Q. incana | | | | Aesculus- | 6000-9000 ft (west | Second storey: Populus ciliata, Ilex dipyrena, Prunus cornuta, Machilus duthiei, Neolitsea umbrosa | | 1 | 7 | Juglans-Acer
forest | midlands), 6500-
9500 (Humla-Jumla
area) | Humla-Jumla area: canopy - Aesculus indica, Juglans regia, Acer caesium, A. cappadocicum, A. sterculiaceum, A. acuminatum, Ulmus wallichiana, Populus ciliata, Betula utilis, Prunus cornuta | | | | | | Second storey: Euonymus species, Corylus colurna, Taxus species, Rhus species, Salix species | | 1 | 8 | Lower
temperate
mixed
broadleaved
forest | 5000-7000 ft,
mostly evergreen,
usually north or
west faces (side
valleys of Arun and
Tamur, and south
of Annapurna and
Himal Chuli) | Machilus duthiei, M. odoratissima, Neolitsea umbrosa,
Cinnamomum tamala | | 1 | 9 | Upper temperate mixed broadleaved forest | 8000-10500 ft in
central and east
midlands, on north
and west faces | Magnolia campbellii, Acer campbellii, Osmanthus suavis,
Schefflera impressa, Corylus ferox | | | | | | Lower range: Rhododendron grande, R. hodgsonii, R. falconeri | | 2 | 00 | Rhododendron | 8500 ft to alpine | Ridge, south aspect: R. abroreum | | 2 | 20 | forest | rest zone, mostly in east | Higher range: R. campanulatum, R. wallichii, R. thomsonii, R. campylocarpum | | | | | | Further higher range: R. fulgens, R. wightii | | | | | | Canopy: Betula utilis, Abies spectabilis | | 2 | 21 | Betula utilis
forest | Treeline species,
11000-12500 ft | Second storey: Acer pectinatum, A. caudatum, Juniperus recurva, Sorbus foliolosa, Rhododendron campanulatum, R. fulgens, R. arboretum, R. hodgsonii. Prunus cornuta, P. rufa | | | | | | | | SN | Forest Type | Distribution | Species association | | | |-----|------------------------------|---|---|--|--| | Tem | Temperate and alpine conifer | | | | | | | Abies | 10000 to treeline,
mostly in central
midlands | Canopy: Abies spectabilis (Syn.: A. webbiana), Tsuga
Dumosa | | | | 22 | spectabilis
forest | | Second storey: Betula utilis, Juniperus recurva, Sorbus cuspidate, S. foliolosa, Acer species | | | | | | | Third layer: Rhododendrons, Daphne bholua | | | | 23 | Tsuga Dumosa | 7000-11000 ft | Canopy: Tsuga Dumosa, Abies spectabilis, Betula utilis,
Quercus semecarpifolia | | | | 20 | forest | 7000 11000 11 | Second layer: Acer sterculiaceum, A. cappadocicum, A. acuminatum, Sorbus cuspidate, Rhododendron arboreum | | | | 24 | Pinus excelsa | 6000 ft to trading | Canopy: Pinus excelsa (Syn.: P. wallichiana), Picea smithiana, Abies spectabilis, Abies pindrow, Cedrus deodara | | | | 24 | forest | 6000 ft to treeline | Second layer: Quercus semecarpifolia, Betula utilis, Alnus nepalensis, Sorbus cuspidata | | | | | Diago amithiana | 7000-11000 ft, in
rain shadowed
areas west of Budhi
Gandaki, abundant
in Humla-Jumla
area | Canopy: Picea smithiana (Syn.: P. morinda), Pinus excelsa,
Abies spectabilis | | | | 25 | Picea smithiana
forest | | Second layer: Quercus semecarpifolia, Betula utilis, Populus ciliate, Juglans regia, Sorbus cuspidate, Acer species, Taxus species | | | | | A1: : 1 | 7000-10500 ft, in | Canopy: Abies pindrow, Picea smithiana, Pinus excelsa | | | | 26 | Abies pindrow
forest | the west, in north and west faces | Second layer: Tsuga Dumosa, Quercus dilatate, Q. semecarpifolia, Aesculus indica, Juglans regia | | | | | Codruo do odoro | 6500-9500, | Canopy: Cedrus deodara, Pinus excelsa | | | | 27 | Cedrus deodara
forest | specifically Humla-
Jumla area | Second layer: Rosa sericea, Salix species, Berberis species, Prunus species | | | | | Cuprocouc | 7000 11000 ft in | Canopy: Cupressus torulosa | | | | 28 | Cupressus
torulosa forest | | Second layer: Wikstroemia canescens, Colquhounia coccinea, Spiraea sorbifolia | | | | 29 | <i>Larix</i> forest | 9500-13000 ft,
Kambachen valley,
Simbua khola (near
Sikkim border),
Langtang valley,
near Rasuwa Garhi,
Shiar Khola, Upper
Budhi Gandaki
valley | Larix griffithiana (near Sikkim border), Larix potanini
(central Nepal, but naming uncertain) | | | | | | Tunej | | | | | SN | Forest Type | Distribution | Species association | |-----|------------------------------------|---|--| | Min | or temperate and a | Ipine associations | | | 30 | Alnus woods | 3000-9000 ft,
along streams
and in places with
permanent water | Alnus nitida (along the Mugu Karnali at 7000-8000 ft), Alnus nepalensis | | 31 | Populus ciliata
woods | 7000-10500 ft, in
drier areas along
streams, in inner
valleys west of the
Trisuli, common in
Humla-Jumla area
(e.g. Mugu Karnali) | Populus ciliata, Cupressus torulosa, Picea smithiana, Pinus
excelsa, Hippophae salicifolia, Myricaria species, Salix
species | | 32 | <i>Hippophae</i>
scrub | 7000-10500 ft,
mostly in the west,
around Tukucha,
Dhorpatan, Humla-
Jumla area | Hippophae salicifolia, Populus ciliata (Hippophae thibetana
in 11000-14500 ft in dry inner valleys), Lonicera myrtillus,
Salix species, Myricaria species, Berberis species | | 33 | Moist alpine
scrub | Above treeline, up
to 14500 ft, on wet
areas | Rhododendron species, Juniperus recurve, Salix sikkimensis,
Lonicera species, Berberis species, Potentilla fruticosa | | | | | Inner valleys east of Langtang: Juniperus wallichiana,
Hippophae thibetana, Rhododendron anthopogon, R.
lepidotum, R. nivale | | 34 | Dry alpine scrub | Above treeline, up
to 15500 ft, on dry
sites | Inner valleys west of Langtang: Juniperus wallichiana,
J. communis, J. squamata, Hippophae thibetana,
Rhododendron anthopogon | | | | | Alpine steppes (Dolpo, Mustang, Manang): Caragana
brevifolia, Lonicera species, Caragana gerardiana, Potentilla
fruticosa, Juniperus wallichiana, Berberis species | | 35 | Juniperus
wallichiana
forest | 9500-10500 ft (e.g. around Dhorpatan) | Juniperus wallichiana (Syn.: J. indica), Abies spectabilis,
Betula utilis, Quercus semecarpifolia, Rhododendron
arboretum, R. campanulatum, Prunus cornuta, Lonicera
lanceolata | ### 2.2 Dobremez et al. (1970-1985) J. F. Dobremez is the most prominent ecologist who extensively studied Nepal's vegetation distribution, diversity, ecology, and interactions between humans and the environment in the late 1960s and 1970s. Between 1969 and 1974 he organized eight separate expeditions, comprising French researchers and renowned Nepalese botanists. They spent a total of two years in the field and
travelled over 15,000 kilometres. The regions they carried out vegetation survey are summarized in Table 4. Table 4: Survey routes followed while carrying out vegetation survey by Dobremez (1976) | SN | Dates | Region | Survey routes | | |----|--------------------------|---------|---|--| | 1 | 28 Mar – 1
July, 1969 | Central | Bhairawa, Rupendehi (110 m) - Jomsom along the Kali Gandaki valley, Tilicho region north of Annapurna (5500 m), South of Annapurna, Lamjung Himal and Himal Chuli, Madi Khola and at the foot of the Himal Chuli, on the crest of Bara Pokhari Lekh, Dhaulagiri massif, the classic route from Pokhara to Dunai, Jumla, Gurjakhani, the foot of Pokhara, Kathmandu to Gosainkund. | | | 2 | 2 June – 1
Sept 1970 | Central | From Buri Gandaki to Sun Kosi, South of Kathmandu, to Hetauda. Lamosagu, Namche Bazar, Okhaldhunga and Aisyalukharka. Gokyo lakes (5,500 m) in the upper Sun Kosi, Jiri, Bigu and Barabhise, a second circuit: Helambu, the Langtang valley after crossing the Ganja La Pass (5,200 m), Panchsaekhola, Satsaekhola and Ankhu Khola. | | | 3 | 29 Oct - 31
Dec 1970 | Central | The valleys of Marsyandi and Budi Gandaki, Manaslu-Himal Chuli massif, Dudh Khola, Larkya La Pass (5,200 m), Budi Gandaki, Shyar Khola (Tsum) and Chuling Khola, Ankhu Khola. | | | 4 | 27 Jun - 28
Oct, 1971 | East | East of Helambu, the extreme east of Nepal, the the eastern Himalayas from 150 to 3800 m altitude | | | 5 | 6 Aug – 19
Sept, 1972 | East | Eeastern Nepal, Mulghat to Topke Gola by the Jaljale Himal (from 450 m to almost 5000 m of altitude), | | | 6 | 4 Apr – 7
Jun, 1973 | West | The extreme West of Nepal, From Dhangadi, Siwalik Doti, the Khaptar, the Seti to Chainpur, Bhajang, the tributary valleys Lachighad in east and Baulighad in west, Surmarowar Lekh, Kaligad Valley, Bajhang, Saipal Mounain in the extreme north of the Seti by the Suni Gad. | | | 7 | 22 Mar – 5
Jun, 1974 | West | A complete tour of Dhaulagiri, from Nepalganj to Pokhara, Bheri to Dunai, passing through Jajarkot and Tibrikot, the trans-Himalayan zone by the Suli Gad to the lake of Phoksundo, then by the Bara La pass to Tarap, Namgong, Simen, Tingyu and Charka, Muktinath Mustang, Pokhara. | | | 8 | Sept - Oct,
1974 | West | West of Nepal in the Jumla region, Surkhet, Dailekh and Dillikot (Jumla),
Mugu then to Simikot. | | Source: Dobremez (1976) Dobremez (1976) synthesized the findings in a book, Le Népal Écologie et Biogéographie (Nepal Ecology and Biogeography) published by the National Center for Scientific Research, France, Paris. He identified 77 vegetation types in six geographic zones. He described each vegetation type in terms the ecology, floristic structure, and species composition with the species names in the upper and lower tree layers, superior and lower shrub layers, and the herbaceous layer. Table 5 summarizes the vegetation types identified by Dobremez (1976) translated from French to English using the Google Translator. Table 5: Vegetation types in Nepal as described by Dobremez (1976) | SN | Vegetation Type | Distribution | Species association | |----|---|--|--| | | Tropical Zone | | | | | | Lower tropical floor,
covering the plains of
Tarai up to an altitude | Upper tree layer: Shorea robusta, Salmalia malabrica,
Adina cordifolia, Bauhinia valhii, Spatholobus
roxburghii | | 1 | Shorea and Dillenia pentagyna forest | | Lower tree stratum: Dillenia pentagyna, Mitragyne parviflora, Amoora decandra, Trewia nudiflora, Bauhinia malabrica | | | Totest | from 400 to 450 m | Superior shrub layer: Mallotus philippinensis,
Giochidion velutinum, Callicarpa macrophylla | | | | | Lower shrub layer: Solanum torvum, Phoenix humilis,
Cassia tora, Ziziphus rugosa | | 2 | Shorea robusta
and Dillenia indica
Forest | Lower tropical floor -
Eastern Tarai | Shorea robusta, Dillenia indica, Sloanea sterculiaceus, Combretum decandrum, Ardisia solanacea, Acacia intsia, Acacia pennata, Dalbergia assamica, Dalbergia stipulacea, Dalbergia sericea, Terminalia belerica, Terminalia chebula, Melia dubia, Antidesma acuminatum, Bridelia tomentose, Trema politoria, Butea minor, Desmodium laxiflorum, Onychium siliculosum | | 3 | Riparian forest
of <i>Dalbergia</i>
sissoo and <i>Acacia</i>
catechu | Lower tropical floor -
boarding rivers in Tarai | Dalbergia sissoo, Acacia catechu, Salmalia
malabarica, Bauhinia malabarica, Phyllanthus
emblica, Randia dumetorum, Zizyphus rugosa,
Albizia procera, A. lebbeck, Acacia megaladena, A.
farnesiana, Adathoda vasica, Alstonia scholaris,
Eranthemum pulchellum, Piptadenia oudhensis,
Calotropis gigantea, C. procera | | 4 | Shorea robusta
and Duabanga
sonneratioides
riparian forest | Lower tropical floor -
Chure slopes | Shorea robusta, Duabanga sonneratioides,
Macaranga denticulate, Macaranga pustulata,
Mallotus philipinensis, Hedychium coccineum,
Hedychium thyrsiforme, Lygodium flexuosum,
Eranthemum pulchellum | | | | | Tree stratum: Shorea robusta, Duabanga
sonneratioides, Lagerstroemia parviflora, Adina
cordifolia, Terminalia tomentosa, Dalbergia sissoo | | 5 | Shorea robusta
and Cycas
pectinata | Lower tropical floor -
Eastern Tarai | Shrub and herbaceous layers: Cycas pectinata,
Trema politoria, Garcinia xanthochymus,
Caesalpinia digyna, Antidesma acuminatum, Bridelia
tomentosa, Reissantia arborea, Cassine glauca,
Meliosma simplicifolia, Melastoma malabathricum,
Brassaiopsis glomerulata, Ardisia solanacea, Maesa
Montana, Calotropis gigantean, Thunbergia fragans | | SN | Vegetation Type | Distribution | Species association | |----|--|--|---| | 6 | Large-grass
pseudo-steppe | Lower tropical floor - on alluvial deposits with | Characteristic species: Saccharum spontaneum,
Phragmites karka, Arundo donax Imperata cylindrical,
Erianthus ravennae, Andropogon spp., Aristida
ascensionis | | | | alternating flooding | Xerophilic shrubs: Phyllanthus emblica, Zizyphus rugosa, Zizyphus maurztzana, Albizia lebbek | | | | | Dominant tree stratum: Shorea robusta, Terminalia tomentosa | | 7 | Shorea robusta
and Terminalia
tomentosa forest
(Chure slopes) | Upper tropical floor -
Chure slopes | Less frequent species: Michelia kisopa, Walsura
trijuga, Pinus roxburghii, Gmelina arborea, Michelia
champaca, Albizia lebbek | | | (chare diopes) | | Shrub layer: Semecarpus anacardium, Phyllanthus emblica, Mallotus phillipinensis | | 8 | Shorea robusta
and Terminalia
tomentosa forest
(Eastern facies) | Upper tropical floor -
Eastern region | Shorea robusta, Terminalia tomentosa, Malotus
albus Rhamnus nepalensis, Bauhinia malabarica,
Castanopsis tribuloides, Clerodendron infortunatum,
Pteris longifolia, Clerodendron serratum, Peperomia
exigua, Aspidopterys nutans, Actiniopteris | | 9 | Shorea robusta
and Terminalia
tomentosa forest
(Western facies) | Upper tropical floor -
Western region | Anogeissus latifolius, Bauhinia variegate, Schleichera
trijuga, Buchanania latifolia, Bauhinia valhii, Shorea
robusta, Leucomeris spectabilis, Wendlandia exserta | | 10 | Shorea robusta
forest | Upper tropical floor -
slope of Maharabharat
Lekh | Shorea robusta, Castanopsis indica, Bauhinia
purpurea, Oroxylum indicum, Holmskioldia sanguinea,
Terminalia tomentosa, Duabanga sonneratioides,
Ficus glaberrima, Mallotus phillipinensis | | 11 | Riparian forest
with Shorea
robusta and
Mimosa rubicaulis | Upper tropical floor -
river banks | Shorea robusta, Mimosa rubicaulis, Salmalia
malabarica, Cedrela toona, Albizia mollis, Alstonia
scholaris, Caesalpinia sepiaria, Cudrania javanensis,
Cryptolepis buchanani, Pandanus furcatus, Deeringia
amaranthoides | | | | Sub-Tro | pical Zone | | 12 | Riparian forest
of Cedrela toona-
Albizia mollis | Lower subtropical
level - a thin strip along
torrents and rivers | Cendrela toona, Albizia mollis, B. rugulosa, B. macrophylla, Cryptolepis buchanani, Bischofia javanica, Celtis australis, C. tetrandra, Dobinea vulgaris, Dichroa f ebrifuga, Rhynchoglossum obliquum, Onychium japonicum, Microlepis speluncae, Odontosoria chinensis, Pilea scripta, Houttuynia cordata, Macaranga denticulate, Coniogramme fraxinea, Porana paniculata | | SN | Vegetation Type | Distribution | Species association | |----|---
---|---| | 13 | Hygrophilous
forest of
Lagerstroemia
parviflora | Lower subtropical level – on the slopes of rivers adjacent to the riparian forest | In addition to the species of the preceding group, Lagerstroemia parvifzora, Schima wallichii, Homalium nepalense, Wendlandia coriacea, Myrica esculenta, Achyranthes aspersa, Acer oblongum, Walsura trijuga, Melia azadirachta, Albizia gamblei, A. lucida, A. myriophylla, Dendrocalamus hamiltonii, Ariopsis peltata | | 14 | Mesohygrophilic
forest of Schima
wallichii -
Castanopsis
indica (Annapurna
Type) | Lower subtropical level
Riparian forests –
annual rainfall > 1000
mm or number of rainy
days >100/year | Schima wallichii, Castanopsis indica and Engelhardtia spicata, Lagerstroemia parviflora, Duabanga sonneratioides, Alnus nepallensis, Litsea lanuginose, Cinnamonum glanduliferum, Myrica esculenta, Maesa chisia, Maesa macrophylla, Meliosma pungens, Fraxinus floribunda, Michelia champaca, Machilus edulis, Grewia vestita, Callicarpa arborea, C. macrophylla, Cyathea spinulosa, Cyathea gigantean | | 15 | Mesohygrophilic
forest of Schima
wallichii -
Castanopsis
indica (Central
Nepal Type) | Lower subtropical
level Riparian forests
– on the most watered
slopes or in the valley
bottoms | Tree stratum: Schima wallichii, Acer oblongum, Castanopsis tribuloides, Quercus glauca, Michelia kisopa, Eugenia jambolana, Machilus odoratissima, Chaerospondias axillaris High shrub layer: Litsea lanuginose, Osmanthus fragrans, Litsea lancifolia, Myrsine capitellata, Mallotus phillipinensis, Callicarpa macrophylla, Turpinia nepalensis Lower strata: Clerodendron kaempferi, Daphne papyracea, Ardisia macrocarpa, Carex spp., Cissampelos pareira | | 16 | Mesohygrophilic
forest of Schima
wallichii -
Castanopsis
indica (East Nepal
Type) | Lower subtropical level
Riparian forests | In addition to the species of the preceding group, Michelia velutina, M. champaca, Albizia gamblei, A. lucida, A. myriophylla, Terminalia myriocarpa, Erythrinu variegata | | 17 | Mesophilic
forest of Schima
wallichii-Pinus
roxburghii | Lower subtropical level
Riparian forests where
the eastern and western
Himalayan species
meet; rainfall between
1000-1500 mm | Canopy layer: Pinus roxburghii with an understorey of Schima wallichi, Helicia nilagirica, Myrica esculenta, Engelhardtia spicata, Myrsine Africana, Mallotus phillipinensis Low density of trees favours heath shrubs including Melastoma normale, Oxyspora paniculata, Phyllanthus parvifolius, Bauhinia variegate, Clematis connate, C. grewiif lora, C. grata | | SN | Vegetation Type | Distribution | Species association | |----|---|---|---| | 18 | Pinus roxburghii
xerophilic forest | Lower subtropical level,
rainfall <1000 mm and
low number of rainy
days | Pinus roxburghii (mostly pure stand), somewhere associated with Olea cuspidata, Pistacia rntegerrima, Olea glanduligera, Pistacia khinjuk, Rhus cotinus, Punica granatum (only in western Nepal), Pectalis saussunia, Inula cappa, Lilium wallichianum, Pogostemon glaber (western and central Nepal) | | 19 | Alnus nepalensis
forest | Upper subtropical level,
>1500 m (West/Centre),
>1300 (East) | Alnus nepalensis, Dichroa febrifuga, Lyonia ovalifolia,
Dobinea vulgaris | | | | | Dominant species: Rhododendron arboreum and Lyonia ovalifolia | | 20 | Rhododendron
arboreum and
Lyonia ovalifolia | Upper subtropical level | Associated species: Quercus glauca, Fraxinus floribunda, Q. leucotricophora (Q. incana), Castanopsis tribuloides Q. lanata | | | | | In the East, species includes <i>Phryma leptostachya</i> , <i>Prunus cerasoides</i> , <i>P. wallichii</i> , <i>Camellia kissi etc</i> . | | | | Tempe | rate Zone | | 21 | Cedrus deodara
forest | Hill floor - very rare
forests west of Jumla
and in the upper Bheri
valley ("Mediterranean"
climate of Nepal) | Tree layer: Cedrus deodara, Cupressus torulosa,
Quercus incana, Olea cuspidata | | 21 | | | Shrub layer: Rhus cotinus, R. punjabensis, Pistacia integerrima, Punica granatum | | 22 | Quercus incana
forest | Hill floor - a
characteristic group of
western Nepal | Tree layer: Quercus incana, Q. lanata, Michelia kisopa, Machilus duthiei, Acer oblongum, Aesculus indica, Juglans regia, Elaeagnus kanai | | | | | Shrub layer: Rhus cotinus, R. punjabensis, Pistacia integerrima | | 23 | <i>Quercus lanata</i> forest | Hill floor – western
Nepal on the southern
slopes | Tree layer: its floristic composition is very close to that of the preceding group and enriched with several oriental species (hygrophiles) including Rhododendron arboretum, Lyonia ovalifolia, Myrica esculenta, Machilus duthiei, Symplocos crataegoides, Litsea umbrosa | | | | | Shrub layer: Hypericum uralum, Randia tetrasperma, Prinsepia utilis, Dendrobenthamia capitata | | 24 | Quercus lanata-
Pinus excelsa
forest | Hill floor – wetter parts
of Kathmandu and Jiri
(hygrophilic character) | Quercus lanata, Pinus excelsa, trees of Symplocaeae and Lauraceae families | | 25 | Abies pindrow
forest | Hill floor – western
Himalaya, rare groups | Tree layer: Abies pindrow, Aesculus indica, Juglans regia, Acer sterculiaceum Shrub layer: Deutzia hookeriana, Ilex dipyrena, | | | TOTEST | on the hilltop | Corylus colurna, Euonimus fimbriatus | | SN | Vegetation Type | Distribution | Species association | |----|--|---|---| | 26 | <i>Quercus glauca</i> forest | A secondary species found in the Quercus forests of the hilltop, | Tree layer: Quercus glauca; includes some hygrophilic species but mainly occurs with mesophilic species such as Q. dilatata (localised), Betula alnoides (dominant), Picea smithiana, Pinus excelsa, Litsea elongata, Quercus lamellosa, L. umbrosa, Q. oxyodon, Magnolia campbelli | | | | Mesohygrophilic stands | Shrub layer: Prinsepia utilis, Colquhounia coccinea,
Daphne papyracea, Euonimus fimbriatus, Sarcoccoca
hookeriana, Clematis barbellata | | | | Doinfall > 1500 mm | Tree layer: Pieris Formosa, Magnolia campbellii,
Erhetia macrophylla, Polygala arillata, Sarcopyramis
nepalensis; | | 27 | Quercus lamellosa
and Lauraceous
forest | Rainfall >1500 mm
and rainy days >75,
hygrophilic group, on
slopes, very humid
microclimate, West
limit Myagdi Khola
(Annapurna-Dhaulagiri
region) | In the lower part (1900-2100 m), Laurel species are numerous: Litsea umbrosa, Neolitsea lanuginose, L. citrate, Lindera pulcherrima, L. elongate, Symplocos crataegoides; | | | | | In altitude 2100-2600 m, tree layer includes
Lauraceae, <i>Quercus lamellosa</i> , <i>Lithocarpus spicata</i> ,
<i>Quercus glauca</i> , <i>Q. oxyodon</i> | | | | | Shrub layer: Colquhounia coccinea, Hydrangea anomala, H. normale, Gaultheria fragrantissima | | 28 | Castanopsis
tribuloides forest | In the east of Sunkosi
river, in 1700-2100 m | Castanopsis tribuloides, Castanopsis hystrix,
Camellia kissi, Lithocarpus fenestrate, Machilus
duthiei, M. edulis, Cinnamonum glanduliferum | | 29 | Quercus lamellosa
and Castanopsis
hystrix forest | Humid area on the hilltop | Species endemic to East Himalayas such as <i>Quercus</i> lamellosa, Symplocos glomerata, Castanopsis hystrix, Symplocos phyllocalyx | | 30 | Pinus excelsa and
Juniperus indica | 1450-4000 m (Central
western Nepal);
Rainfall 750-2500 mm;
most xerophilic of the
mountain groups | Tree layer: Pinus excelsa, Juniperus indica,
Cupressus torulosa (upper stratum), Prinsepia utilis,
Rhododendron lepidotum, Berberis aristata, Rosa
sericea | | | forest | | Shrub layer: Tanacetum nubigenum, Leontopodium stracheyi, Erigeron bellidioides | | 32 | Pinus excelsa
forest | In all the great internal valleys up to the level of the Everest massif, Kali Gandaki and in Ghustung Khola on both sides of the Dhaulagiri Massif | Tree layer: Pinus excelsa, Tsuga dumosa, Taxus baccata, Acer stachyophyllum, A. caudatum (rich in species than the previous groups; at rainfall >1000 mm: deciduous species such as Maples, Oak, Birches | | | | | Shrub layer: Deutzia staminea, Prinsepia utilis,
Holboellia latifolia, Viburnum cylindricum | | SN | Vegetation Type | Distribution | Species association | | |----|--
---|--|--| | 32 | Picea smithiana | | Tree layer: Picea smithiana, Pinus excelsa, Tsuga dumosa | | | 32 | and <i>Pinus excelsa</i> forest | | Shrub layer: Sarcoccoca hookeriana, Buddleia tibetica, Dendrobenthamia capitata, Ribes alpestre | | | 33 | Quercus
semecarpifolia
forests – west | 2000-5000 m altitudinal range, up to subalpine | Tree layer: Quercus semecarpifolia, Pinus excelsa (non constant), Rhododendron arboretum, Prunus padus | | | | Nepal | level | Shrub layer: Viburnum grandiflorum, V. cordifolium, Buddleia tibetica, Deutzia staminea | | | 34 | Quercus
semecarpifolia | Marsyandi to the crests which separate Arun | Tree layer: Quercus semecarpifolia, Tsuga dumosa, Ilex dipyrena, I. fragilis | | | 34 | forests – Typical
facies | from Tamur | Shrub layer: Colquhounia coccinea, Elsholtzia fruticosa, Sarcoccoca hookeriana, Daphne papyracea | | | 35 | Quercus
semecarpifolia
forests –
Annapurna facies | Rainfall over 3500 mm,
western limit | Species of the previous group and some additional East Himalayan species such as <i>Rhododendron dalhousiae</i> (epiphyte), <i>Vaccinium retusum</i> , <i>V. nummularia</i> , <i>Polygala arillata</i> | | | 36 | Rhododendron
facies | Very wet areas, replaces Q. semecarpifolia | Rhododendron arboreum var. cinnamomeum,
Rhododendron barbatum | | | 37 | Tsuga dumosa
Facies | Favoured by shade and coolness, steep slopes of deep ravines | Tsuga dumosa, Sarcoccoca hookefiana, Taxus
baccata | | | 38 | Riparian facies | Hygrophilic species along the edge of rivers | Populus ciliata (in the west), Betula alnoides,
Hippophae salicifolia with Alnus nepalensis up to
2650 m | | | 39 | Mountain
Heathland | Deforested area for temporary dwellings | Shrub layer: Viburnum erubescens, Leptodermis lanceolata, Elsholtzia fruticosa, Rhododendron lepidotum, Cotoneaster microphylla | | | 40 | Lithocarpus
pachyphylla forest | Endemic to East Nepal-
Sikkim-Assam | Tree layer: Lithocarpus pachyphylla, Sorbus hedlundi, Acer sikkimense, Symplocos phyllocalyx | | | 41 | Daphniphyllum
himalayense
forest | Upper mountain | Daphniphyllum himalayense with Rhododendron arboreum var. campbelliae, R. barbatum and R. grande | | | | Subalpine Zone | | | | | 42 | Abies spectabilis and Quercus | up to 3800-3900 m, <i>Q.</i> semecarpifolia semecarpifolia: West of | Tree layer: Abies spectabilis, Quercus semecarpifolia, Tsuga dumosa, Taxus baccata, Rhododendron arboretum | | | | forest | | Shrub layer: Piptanthus nepalensis, Viburnum cotinifolium, V. cordifolium, V. coriaceum | | | SN | Vegetation Type | Distribution | Species association | |----|---|---|--| | 43 | Abies spectabilis
forest (Typical
region) | Lower subalpine level,
A. spectabilis dominates
from 83°30' to 87°30' E. | Tree layer: Abies spectabilis, Acer caudatum, A. caesium, Acer pectinatum Shrub layer: Viburnum cotinifolium, V. cordifolium, Spiraea hypericifolia, S. bella | | 44 | Rhododendron
forest | Lower subalpine, high rainfall, 10-12 m high | Rhododendron arboreum, R. barbatum | | 45 | Juniperus indica
forest | Lower subalpine
level, mountain peaks
and ridges, reduced
humidity, up to 30 m
high | Juniperus indica, Juniperus recurva, occassionally associated with Fir trees in driest area both in tree and ground creeper forms. | | 46 | <i>Larix potanini</i>
forest | Lower subalpine xerophilic and mesophilic associations; Hygrophilic association (L. griffithiana); Northern slopes in the upper Budhi Gandaki | Tree layer: Abies spectabilis, Larix potanini, Betula utilis, Juniperus recurva, Rhododendron campanulatum The shrub stratum is comparable to that of the subalpine group at Quercus semecarpifolia and Abies spectabilis forests. | | 47 | Larix griffithiana
forest | Lower subalpine level,
more humid area –
southern slopes of
Ganesh Himal, Chhulin
Khola valley | The floristic composition is similar to that of the Hygrophilous <i>Abies species</i> (Fir) forests. | | 48 | Larix potanini
and L. griffithiana
forest | Lower subalpine level, internal valleys with average rainfall 1000-1500 mm – northern slopes of the Tsum (Shiar Khola) and Langtang valley | Larix spp. (Larch) accounts between 10 to 40 % of the tree layer. The floristic-ecological characteristics are similar to those of the Fir (Abies spp.) forests. | | 49 | Populus ciliata
forest | Lower subalpine level,
along the riverbanks,
West of 85ºE | Tree layer: Populus ciliata, Hippophae rhamnoides,
Primula involucrata | | 50 | The Himalayan
larch forest | Lower subalpine level | On dry condition – <i>Larix potanini (Larix himalaica</i> in Tibet); Moist condition – <i>Larix griffithii</i> | | 51 | Xerophilic forest of <i>Larix potanini</i> | Lower subalpine level,
Upper valley of Shiar
Khola, 15-20 m high | Generally pure stand of <i>Larix potanini</i> Shrub layer: <i>Betula utilis, Rosa sericea</i> | | 52 | Larix griffithiana
hygrophilous
forest | Lower subalpine level,
in the highest valleys
of the extreme East of
Nepal | Pure stand of <i>Larix griffithiana</i> , sometimes mixed with few Firs, Maples and Rhododendrons | | SN | Vegetation Type | Distribution | Species association | |----|--|--|---| | | | | Replaces Abies spectabilis in the humid area, | | | | Lower subalpine
level, East of the Arun | Tree layer: Rhododendron arboreum var.
Campbelliae, R. hodgsoni, R. grande, R. lepidotum | | 53 | Rhododendron subalpine forest | Valley, <10 m high, covered with Lichens, | Shrub layer: Viburnum cotinifolium, V. cordifolium, Spiraea hypericifolia, S. bella | | | | Mosses, Hepatics and
Hygrophilous Ferns | Upper level > 3500 m: Betula utilis, Rhododendron campanulatum, R. campylocarpum, R. lanatum, R. wightii | | 54 | Xerophilic forest | Upper subalpine level,
the limit of vegetation in | Tree layer: Betula utilis, Prunus rufa; Pinus excelsa (in the upper Kali Gandaki, north of Dolpo) | | 54 | of Betula utilis | the arid zones of north-
western Nepal | Shrub layer (Steppe species): Caragana gerardiana, Ephedra gerardiana, Lonicera spp. | | 55 | Mesophilic forest
of <i>Betula utilis</i>
(Typical facies) | Upper subalpine level,
3700-4000 m except in
drier region | Tree layer (3-10 m): Betula utilis (60 %), Sorbus foliolosa (10 %), Acer caudatum (5 %), Sorbus microphylla | | | | | Shrub layer: Rhododendron anthopogon,
Rhododendron setosum, Lyonia viliosa | | 56 | Juniperus indica
forest | Upper subalpine level,
on the crests and peaks
of slopes, common in
the dry areas in West | Pure stand of Juniperus indica | | | | Alpir | ne Zone | | 57 | Pioneer species group on scree | Lower alpine level, 3950 – 4100 m up to 4500 m, large number of small woody species | Characteristic species on medium sized rocks (5-20 cm) (siliceous or weakly carbonated crystalline or metamorphic) - <i>Eriophyton wallichianum, Marina polyphylla, Silene nigrescens</i> | | 58 | Pioneer species
group on
torrential gravels | Lower alpine level,
Torrential alluviums well
supplied with water and
generally humid | Characteristic species: Hippophae rhamnoides,
Myricaria rosea, Oxyria digyna, Senecio bracteolatus,
Primula sikkimensis | | 59 | Pioneer species
group on
moraines | Lower alpine level,
Moraine alluviums
generally dry and may
form reliefs | Characteristic colonizing species: Cotoneaster microphylla, Polygonum vacciniifolium, P. affine, Pedicularis sculleyana, Sedum himalayanum, S. bupleuroides | | 60 | Mesophilic
Junipers | Dry parts of the lower
alpine level, in the inner
valleys and behind
the line of crest of the | Prominent species: Juniperus squamata (most xerophilic, widespread in the West), Juniperus indica, Juniperus recurva | | | Heathland | great Himalayas, covers about 50% of the ground surface. | Other Species: Berberis angulosa, Lonicera myrtillus,
L. hispida, Ephedra gerardiana, Cassiope fastigiata,
numerous grasses | | SN | Vegetation Type | Distribution | Species association | |----|---|--|--| | | | | Characteristic species: Lonicera myrtillus, L. hispida,
Potentilla fruticosa, Salix daltoniana, Spiraea arcuata,
Codonopsis thalictrifolia | | 61 | Mesohygrophilic
Rhododendron
Heathland | Dry parts of the lower
alpine level, also grow in
more humid conditions | Herbaceous species: Anemone rivularis,
Cyananthus lobatus, C. microphyllus, Arisaema flavum, Anaphalis nubigena etc. | | | | | In the East, includes East Himalayan species:
Rhododendron elaeagnoides, R. wightii,
Paroxygraphis sikkimensis, Aletris pauciflora | | | | | Characteristic species: | | | | | Initial group of species - Oxygraphis glacialis, 0. Polypetala, Paroxygraphis sikkimensis, Androsace selago, A. villosa | | | | Lower alpine level,
plants grow after the
snow melts and bloom
during the monsoon.
Maximum bloom
between 1-15 August. | Second group of species - Caltha scaposa, Primula strumosa, P. aureate, P. denticulate, P. stuarti | | 62 | Lower Alpine
Meadow | | Characteristic species of dry Meadows: Onosma
bracteatum, Calophaca crassicaulis, Megacarpaea
polyandra, Gentianella moorcroftiana, Aster falconeri
Characteristic species of humid Meadows: | | | | | Pedicularis megalantha, P. siphonantha, P.
trichoglossa, P. elwesii, P. nepalensis | | | | | Species such as Poa pagophila, Pleurospermum apiolens, P. rotundatum, Polygonum milletii occur on both climates. | | 63 | Vegetation on scree | Upper alpine level (up to 5000 m) | Characteristic species: Anaphalis cavei,
Chrysanthemum gossypinunz, Arenaria glanduligera,
Corydalis meifolia | | 64 | Meadows on
the fine and
homogenous soil | Upper alpine level,
soil types podzols,
nanopodzols, rankers;
dominated by grasses | Characteristic species: dominated by grasses or
Cyperaceae including Carex pisanensis, C. nakaona,
Kobresia royleana, K. nepalensis | | 65 | Vegetation
on soil with
heterogenous
structure | Upper alpine level | Characteristic species: Chamephytes, Rhododendron
nivale (up to 5000 m), Lonicera hispida, L. myrtillus,
Pincushion species (very high), Other species:
Androsace globifera, A. lehmanni, Saxifraga
engleriana, S. diapensia | | 66 | Upper Alpine
vegetation | Upper alpine level, up
to driest area 6000 m
with normal limit of
5500 m, up to 5000 m in
Annapurna region | Characteristic species: Corydalis nana, Saussurea gossypiphora, S. graminifolia, Waldheimia glabra, Saxifraga engleriana etc. Species of genera - Ranunculus, Aster, Sedum, A stragalus, Pedicularis, Phlomis, Carex, and Crucifers | | | | 1 3 | | | SN | Vegetation Type | Distribution | Species association | |----|---------------------------------|--|---| | 67 | <i>Olea cuspidata</i>
Steppe | Steppe (arid region),
wooded steppe, rainfall
350-500 mm, 4-5 m
high, density <100 tree/
ha, Bheri valley near
Dunai and western
Nepal | Characteristic species: Olea cuspidate, Pistacia integerrima, Capparis spinosa, Acer pentapomicum, Punica granatum, Woodfordia fruticosa, Zanthoxylum alatum, Oplismenus compositus, Eriophorum comosum | | 68 | Cupressus
torulosa Steppe | Steppe (Arid region),
Wooded steppe, rainfall
350-500 mm, 4-5 m
high, density <100 tree/
ha, Kali Gandaki Valley
and south of Dolpo | Tree layer: Cupressus torulosa and associated species include Abelia triflora, Colquhounia coccinea, Wikstroemia canescens, Plectranthus rugosus, Buddleia tibetica, Rosa sericea, Berberis aristata, Berberis mucrifolia, Cotoneaster microphylla, Spiraea arcuata, Leptodermis lanceolata, Arisaema flavum, Ceratostigma ulicinum, Incarvillea grandiflora, Ephedra gerardiana, Caragana brevispina | | | | | Tree layer: Juniperus indica | | 69 | Juniperus indica
Steppe | Steppe (Arid region),
Wooded steppe, rainfall
350-500 mm, 4-5 m
high, density <100 tree/
ha | Shrub layer: Juniperus squamata, Rosa sericea, Berberis aristata, Myricaria germanica, Potentilla fruticosa, Syringa emodi, Lonicera quinquelocularis, L. spinosa, L. minutif olia, Caragana brevispina Herbaceous layer: Hordeum brevisubulatum, Stipa capensis, Tanacetum nubigenum, Androsace villosa, Leontopodium stracheyi, Micromeria nepalensis, Stellera chamaejasme; Lamium (only in Western Nepal) | | 70 | Caragana
nepalensis Steppe | Arid zone, rainfall 250-
300 mm, up to 2 m high,
the least xerophilic
species, exposed slopes
to the south of the
Langtang valley, species
rich, dense | Characteristic species: Caragana nepalensis,
Elsholtzia fruticosa, Aster albescens, Rhododendron
lepidotum, Cotoneaster microphylla, Berberis aristata,
Marina longifolia, Artemisia vulgaris, Rosa sericea,
Pennisetum flaccidum, Polygonum campanulatum,
Juniperus squamata, Pedicularis gracilis | | 71 | Caragana
brevispina Steppe | Arid zone (2700-3500
m), 40-50 cm high | Dominant species: Caragana brevispina Shrub layer (20-40%): Caragana brevispina, Rosa sericea, Rhododendron lowndesii, Ephedra gerardiana, Berberis mucrifolia, B. angulosa, Lonicera hypoleuca, L. minutifolia | | 72 | Caragana
gerardiana steppe | Arid zone, very thick
tufts, 50 cm high | Characteristic species: Caragana gerardiana,
Berberis pl. sp., Artemisia sacrorum, A. maritime, A.
sieversiana, A. annua, A. vestita | | SN | Vegetation Type | Distribution | Species association | |----|---|---|---| | | _ | | Dominant species: Caragana pygmaea, Lonicera spinosa | | 73 | Caragana
pygmaea and
Lonicera spinosa
Steppe | Arid zone, above 4000
m, sometimes up
to 5000 m, very low
organic matter content | Companion species: Androsace sessiliflora,
Physochlaina praealta, Incarvillea younghusbandii,
Nepeta leucophylla etc. | | | | organio matter content | Other species: Potentilla fruticosa, Berberis koehneana, Lonicera myrtillus, Juniperus squamata | | 74 | Juniperus
squamata
Heathland | Alpine steppe level, dry
zone between 4000-
5000 m | Characteristic species (Shrub layer): Juniperus squamata, Rhododendron nivale, R. anthopogon, R. lepidotum | | 75 | Alpine Meadows | Alpine steppe level, dry
zone between 4000-
5000 m | Pennisetum flaccidum exists in upper Bheri.
Meadows of Bromus littledalea occur at the same
level as the steppe vegetation of Caragana-Lonicera. | | | High altitude
isolated
vegetation | Alpine steppe level,
between 5000-5500 m,
up to 6000 m, isolated
(padded) vegetation | Characteristic species: Potentilla biflora var. lahulensis, Androsace sessiliflora, A. muscoidea, Arenaria polytrichoides, Thylacospermum rupifragum, Saxifraga hypostoma, S. pulvinaria, S. staintonii, S. andersoni, S. georgei | | 76 | | | Other non-padded species: Rhododendron nivale,
Picrorhiza scrophulariaefolia, Aster flaccidus, Nepeta
pharica, Aster linkiangensis, Oreosolen wattii | | | | (padada) regetation | At 5400 m - Dense meadow with at least 80 species | | | | | At 5800 m – isolated patch with more than 30 species | | | | | At 6000 m - vegetation with more than 10 species | | SN | Vegetation Type | Distribution | Species association | |----|-----------------------------------|--|---| | | | | Kali Gandaki Valley: extensive xerophilic vegetation on the upper region, low number of species; Characteristic species: Sophora moorcroftiana, Lonicera hypoleuca, Oxytropis mollis, Berberis mucrifolia, Ephedra gerardiana; Vegetaton on halomorphic soil: Salsola kali, Triglochin palustre, Triglochin maritimus | | | 7 Xerophilic valley
formations | Faces north to
south, windy, intense
evaporation, xerophilic
vegetation | Karnali Valley (West of Jumla): main valley with steppe with grass and succulent plants; Species on the river slopes: Aristida ascensionis, Euphorbia royleana, Agave Mexicana, Opuntia vulgaris, Sarcostemma sp., Kalanchoe spathulata | | 77 | | | Trisuli Valley (from the Syabrubesi to the Tibetan boarder): Similar vegetation to Karnali Valley but less succulent species; Common species: Euphorbia royleana | | | | | Bheri Valley: North-South course downstream from Tibrikot, a few xerophilic and succulent species include Boucerosia umbellate, Selaginella bryopteris, Euphorbia royleana, Dipcadi hysudricum, Urginea indica | | | | | Marsyandi Valley: Downstream from Thonje, unique vegetation on the slopes; Grasses grow on the gravel that include <i>Aristida ravennae, Pennisetum flaccidum</i> and a species of <i>Leptodermis. Chamaeropes</i> palm between 1400 to 1900 m, which mixes with <i>Pinus excelsa</i> at the upper limit. | Based on Dobremez and his colleague's extensive fieldwork across Nepal, seven ecological maps of scale 1:250,000 covering entire country were produced between 1972 and 1985 (MoFSC 2002). These ecological maps applied the iso-potential zoning approach coined by P. Ozenda in 1963 and then used for medium to small-scale ecological mapping. The iso-potential ecological zone signifies a relatively homogenous area in terms of the ecological
factors, including physical (abiotic), biological (biotic) and human factors and their interactions to manifest a unique natural environment. Hence, the iso-potential area is characterized by the homogeneity of ecological factors and their interactions, and the concept is considered more comprehensive than 'biotope' or 'ecosystem' (Dobremez 1976). In 2003, ICIMOD digitized these manually drawn ecological maps into the geospatial map by generalizing the maps based on elevation, vegetation and the base map (Figure 1) (ICIMOD 2003). The generalized ecology map identified 62 ecology types comprising 60 vegetation types, one water body, and Nival zone. The 60 vegetation types were classified based on the bioclimatic zone (14 vegetation types), physiographic zone (4 forest types), dominant plant genus using common names comprising one genus only (11) or two (11) or three genus (9) forest types, mixed forest formation (5 forest types) and scrubs/shrubs/steppe/grass (6) vegetation types. Figure 1: Dobremez Ecology Map of Nepal digitized by ICIMOD (2003) Biodiversity Profile Project (BPP 1996) classified Nepal's ecosystem types based on the above seven ecology maps. According to the report, these maps were digitized in 1995 and identified 198 vegetation communities across Nepal. However, Tree Improvement and Silviculture Component (TISC 2002) inconsistently reported the number of vegetation types classified in these maps. Without the access to the BPP's digitized map delineating 198 vegetation types from the Dobremez's seven ecology maps, we could not reconcile the total number of vegetation types in these reports. ### 2.3 Jackson (1994) Jackson (1994) describes 24 vegetation types in Nepal. His classification is based largely on Stainton (1972) and Dobremez (1976). He classifies vegetation types according to their distribution in six bioclimatic zones, i.e. tropical, subtropical, lower temperate, upper temperate, subalpine, and alpine. Table 6 lists Jackson's (1994) vegetation types, with their distribution and species association. Table 6: Vegetation types in Nepal as described by Jackson (1994) | SN | Vegetation type | Distribution | Species association | | | | | |---|---|---|--|--|--|--|--| | Trop | Tropical zone (up to 1000 m) | | | | | | | | 1 | Shorea robusta
forest | Terai plains and the hills | Shorea robusta, Terminalia alata, Adina
cordifolia, Anogissus latifolia, Lgerstroemia
parviflora, Dillenia pentagyna, Syzygium
cumini, Semicarpus anacardium | | | | | | 2 | Acacia catechu-
Dalbergia sissoo
forest | On newly deposited alluvium along streams and rivers | Acacia catechu, Dalbergia sissoo | | | | | | 3 | Other riverain
forest | Small strips of forest in moist localities near streams | Michelia champaca, Litsea species, Phoebe lanceolata, Actinodaphne angustifolia, Cinnamomum species (east), Syzyzium cumini (west) [Stainton's Tropical Evergreen Forest]; Bombax ceiba, Holoptelea integrifolia, Trewia nudiflora [Stainton's Tropical Deciduous Riverain Forest] | | | | | | 4 | Grassland | Usually on poorly drained
clays; e.g. Rapti valley (CNP),
Shuklaphanta | Saccharum spontaneum, Phragmites karka,
Arundo donax, Eulaliopsis binata | | | | | | 5 | Terminalia-
Anogeissus
deciduous hill
forest | Southern slopes in the foothills in the west up to 1200m, south slopes in the large river valleys elsewhere | Terminalia alata, Anogeissus latifolia,
Ehretia laevis, Flacourtia indica, Lannea
coromandelica, Shorea robusta | | | | | | Subtropical zone (1000-2000m in the west, 1000-1700m in the east) | | | | | | | | | 6 | Pinus roxburghii
forest | On all aspects in the west; southern aspects and dry lower slopes of large river valleys in centre and east | Pinus roxburghii (generally pure), but also
with Olea ferruginea, Pistacia species (west),
Schima wallichii, Shorea robusta | | | | | | 7 | Schima-
Castanopsis
forest | On moister sites (e.g. north face
and area of heavy rainfall) in
central and eastern Nepal | Schima wallichii, Castanopsis indica (below 1200m), C. tribuloides (above 1200m) | | | | | | 8 | Alnus nepalensis
forest | In wet areas along streams and ravines, newly exposed soils, abandoned cultivation | Alnus nepalensis (generally pure), Lyonia ovalifolia | | | | | | 9 | Riverain forest
with <i>Toona</i> and
<i>Albizia</i> species | Along streams, corresponding
to Stainton's Subtropical Semi-
evergreen Forest | Toona ciliata, Albizia species, Pandanus
nepalensis | | | | | | Low | Lower temperate zone (2000-2700m in the west, 1700-2400m in the east) | | | | | | | | 10 | Forest of Quercus
leucotrichophora
and Q. lanata | 1750-2400m, on all aspects in
the west and south slopes and
sides of large river valleys in the
centre and east | Quercus leucotrichophora (west), Q. lanata (east) | | | | | |---|--|---|--|--|--|--|--| | 11 | Quercus
floribunda forest | 2100-2850m, on wet sites | Quercus floribunda, Aesculus indica, Acer species | | | | | | 12 | Quercus
lamellosa forest | 1900-2600m, Replaces <i>Q. lanata</i> forest in areas of high rainfall, such as south of the Annapurna massif, confined to north and west aspects | Quercus lamellosa, with Lauraceae of the temperate mixed broadleaved forest | | | | | | 13 | Lower
temperate mixed
broadleaved
forest, with
abundant
Lauraceae | 1500-2100m, north and west aspects and in high rainfall areas | Machilus species, Neolitsea cuipila,
Cinnamomum tamala, Listea species, Michelia
kosopa, Quercus lamellosa | | | | | | 14 | Pinus wallichiana
forest (lower
type) | 1800-4000m, lower type on dry, south-facing slopes | Pinus wallichiana | | | | | | Upp | Upper temperate zone (2700-3100 in the west, 2400-2800m in the east) | | | | | | | | 15 | Quercus
semecarpifolia
forest | 2400-3000m (centre and east),
extends up to 3700m in the
west, more prevalent on south
aspect | Quercus semecarpifolia, Rhododendron
arboretum, llex dipyrena | | | | | | 16 | Upper temperate
mixed
broadleaved
forest | 2400-3150m, mainly on north
and west slopes east of the Kali
Gandaki | Acer species, Rhododendron arboretum,
Lauraceae (Litsea, Lindera, Neolitsea), Tsuga
dumosa | | | | | | 17 | Rhododendron
forest | Very moist places, especially in the far east | Rhodedendron arboretum, R. barbatum, R. grande, R. falconeri | | | | | | 18 | Upper temperate coniferous forest | Stainton's Picea smithiana and Abies pindrow forests are also included in this type. | Pinus wallichiana (generally pure), but with Abies pindrow, Picea smithiana, Cedrus deodara in moister areas in the west, Juniperus indica in dry Mustang region, Tsuga Dumosa, Taxus baccata, Acer species in centre and east | | | | | | Subalpine forest (3000-4200m in the west, around 3000m in the east) | | | | | | | | | 19 | Abies spectabilis
forest | 3000-3500m (centre), up to treeline (west) | Abies spectabilis, with Quercus semecarpifolia in the west, Rhododendron species, Acer species, Larix griffithiana, L. himalaica in the centre and east | | | | | | 20 | Betula utilis
forest | 3300m to treeline | Betula utilis (generally pure), but with Rhododendron species, Acer species in the understory; Abies spectabilis, Quercus semecarpifolia in the west and Humla-Jumla area | | | | | | | | | | | | | | | 21 | Rhododendron In wet sites in the east forest | | Rhododendron campanulatum, R. thomsonii,
R. campbellianum | | |------|--|-------------------------------------|---|--| | 22 | Juniperus indica
steppe | North of the Himalaya | Juniperus indica, with shrubby understory | | | 23 | Caragana steppe | In Mustang region | Caragana species | | | Alpi | ne zone (between t | ree line and the region of perpetua | l snow) | | | 24 | Alpine vegetation | | Shruby Rhododendrons and junipers,
Hippophae rhamnoides, Cotoneaster
microphyllus | | ### 2.4 Biodiversity Profiles Project (1996) The Biodiversity Profiles Project (BPP)'s classification of Nepal's ecosystems is primarily based on the ecological maps prepared by Dobremez and his colleagues between the late 1960s and 1985. BPP reported 136 ecosystem types in the original ecological maps and reduced them to 118 ecosystem types by merging the similar ecosystem types (BPP 1996). Among the 118 ecosystem types, 112 represent vegetation types at different physiography, bioclimate and biogeographic regions (Table 7). The rest six types (presented in the last rows of Table 9) represent non-vegetation ecosystems, such as water bodies, glaciers, and cultivated areas. Although the ecological maps had identified vegetation types across Nepal, BPP used the term 'ecosystem type' instead of 'vegetation type'. By definition, ecosystem and vegetation are significantly different terms and are not appropriate to use
interchangeably. For the ecosystem classification, BPP (1996) used four physiographic zones (viz. the Highlands, Midhills, Siwaliks, and Terai), six bioclimatic divisions (viz. alpine, sub-alpine, montane, collinean, sub-tropical, and tropical, with upper and lower sub-levels for alpine and sub-alpine levels), and three biogeographic regions (viz. western, central, and eastern regions) in Nepal. Table 7: Ecosystem types in Nepal as described by BPP (1996) | SN | Code | Name of ecosystem | Altitude (m) | | | | |-------|------------------------------|--|--------------|--|--|--| | High | Highlands physiographic zone | | | | | | | Alpiı | Alpine level | | | | | | | Uppe | Upper alpine level | | | | | | | 1 | 2101 | Alpine meadows with Graminae and Cyperaceae | 4000-4800 | | | | | 2 | 2102 | Xerophytic mat patches and scarcely vegetated rocks and screes | | | | | | 3 | 2103 | Mesophytic mat patches and scarcely vegetated rocks and screes | | | | | | 4 | 2104 | Mesophytic and hydrophytic mat patches and scarcely vegetated rocks and screes | | | | | | 5 | 2105 | Alpine meadows on the southern side of the Himalaya | | | | | | 6 | 2106 | Dry alpine vegetation on the northern side of the Himalaya | | | | | | 7 | 2107 | High altitude discontinuous vegetation cushion plants | | | | | | 8 | 2108 | Meadows: mat patches | | | | | | 9 | 2109 | Scarcely vegetated rocks and screes of upper alpine level | | | | | | 10 | 2110 | Meadows et lande communes aux deux soux etages | | | | | | Lower alpine level 11 2201 Rhododendron mesohygrophytic scrublands, Juniperus, meadows 3800-4300 12 2202 Rhododendron mesohygrophytic scrublands (R. anthopogan, R. nivale) 13 2203 Juniper mesohygrophytic scrublands (J. indica, J. recurva, J squamata) 14 2204 Xerophytic closed alpine mat and scrub 15 2205 Mesophytic closed alpine mat and scrub 16 2206 Shrublands with patches of abundant Rhododendron anthopogon, R. nivale Sub-alpine level Upper sub-alpine level Western biogeographical region 17 3101 Mesophytic closed sub-alpine mat and scrub (R. anthopogon) 3300-3800 18 3102 Rhododendron-Birch forest (Betula utilis, R. campanulatum) 3300-3700 19 3103 Birch-Blue pine open forest Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron-Juniper shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir forest with oak and rhododendron 2900-3400 26 3203 Fir forest (Abies spectabilis) Lower sub-alpine level Eastern Nepalese biogeographical region | | | | | |--|--|--|--|--| | 12 2202 Rhododendron mesohygrophytic scrublands (<i>R. anthopogan, R. nivale</i>) 13 2203 Juniper mesohygrophytic scrublands (<i>J. indica, J. recurva, J squamata</i>) 14 2204 Xerophytic closed alpine mat and scrub 15 2205 Mesophytic closed alpine mat and scrub 16 2206 Shrublands with patches of abundant <i>Rhododendron anthopogon, R. nivale</i> Sub-alpine level Upper sub-alpine level Western biogeographical region 17 3101 Mesophytic closed sub-alpine mat and scrub (<i>R. anthopogon</i>) 3300-3800 18 3102 Rhododendron-Birch forest (<i>Betula utilis, R. campanulatum</i>) 3300-3700 19 3103 Birch-Blue pine open forest Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 | | | | | | 132203Juniper mesohygrophytic scrublands (<i>J. indica, J. recurva, J squamata</i>)142204Xerophytic closed alpine mat and scrub152205Mesophytic closed alpine mat and scrub162206Shrublands with patches of abundant <i>Rhododendron anthopogon, R. nivale</i> Sub-alpine levelUpper sub-alpine level Western biogeographical region173101Mesophytic closed sub-alpine mat and scrub (<i>R. anthopogon</i>)3300-3800183102Rhododendron-Birch forest (<i>Betula utilis, R. campanulatum</i>)3300-3700193103Birch-Blue pine open forestUpper sub-alpine level Central Nepalese biogeographical region203110North Himalayan alpine vegetationUpper sub-alpine level Eastern Nepalese biogeographical region213120Betula utilis forest with Rhododendron and Abies spectabilis3200-3900223121Rhododendron shrublands3300-3900233122Rhododendron-Juniper shrublands3600-3900Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (<i>Abies spectabilis</i>) | | | | | | 14 2204 Xerophytic closed alpine mat and scrub 15 2205 Mesophytic closed alpine mat and scrub 16 2206 Shrublands with patches of abundant Rhododendron anthopogon, R. nivale Sub-alpine level Upper sub-alpine level Western biogeographical region 17 3101 Mesophytic closed sub-alpine mat and scrub (R. anthopogon) 3300-3800 18 3102 Rhododendron-Birch forest (Betula utilis, R. campanulatum) 3300-3700 19 3103 Birch-Blue pine open forest Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 26 3203 Fir forest (Abies spectabilis) | | | | | | 15 2205 Mesophytic closed alpine mat and scrub 16 2206 Shrublands with patches of abundant Rhododendron anthopogon, R. nivale Sub-alpine level Upper sub-alpine level Western biogeographical region 17 3101 Mesophytic closed sub-alpine mat and scrub (R. anthopogon) 3300-3800 18 3102 Rhododendron-Birch forest (Betula utilis, R. campanulatum) 3300-3700 19 3103 Birch-Blue pine open forest Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 26 3203 Fir forest (Abies spectabilis) | | | | | | Sub-alpine level Upper sub-alpine level Western biogeographical region 17 3101 Mesophytic closed sub-alpine mat and scrub (R. anthopogon) 3300-3800 18 3102 Rhododendron-Birch forest (Betula utilis, R. campanulatum) 3300-3700 19 3103 Birch-Blue pine open forest Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron-Juniper shrublands 3300-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 | | | | | | Nivale Sub-alpine level Upper sub-alpine level Western biogeographical region 17 3101 Mesophytic closed sub-alpine mat and scrub (R. anthopogon) 3300-3800 18 3102 Rhododendron-Birch forest (Betula utilis, R. campanulatum) 3300-3700 19 3103 Birch-Blue pine open forest Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest
2800-3300 | | | | | | Upper sub-alpine level Western biogeographical region173101Mesophytic closed sub-alpine mat and scrub (R. anthopogon)3300-3800183102Rhododendron-Birch forest (Betula utilis, R. campanulatum)3300-3700193103Birch-Blue pine open forestUpper sub-alpine level Central Nepalese biogeographical region203110North Himalayan alpine vegetationUpper sub-alpine level Eastern Nepalese biogeographical region213120Betula utilis forest with Rhododendron and Abies spectabilis3200-3900223121Rhododendron shrublands3300-3900233122Rhododendron-Juniper shrublands3600-3900Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | 17 3101 Mesophytic closed sub-alpine mat and scrub (<i>R. anthopogon</i>) 3300-3800 18 3102 Rhododendron-Birch forest (<i>Betula utilis, R. campanulatum</i>) 3300-3700 19 3103 Birch-Blue pine open forest **Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation **Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 **Betula utilis forest with Rhododendron and *Abies spectabilis* 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 **Lower sub-alpine level West Nepalese biogeographical region** 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 26 3203 Fir forest (<i>Abies spectabilis</i>) | | | | | | 18 3102 Rhododendron-Birch forest (Betula utilis, R. campanulatum) 3300-3700 19 3103 Birch-Blue pine open forest Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 26 3203 Fir forest (Abies spectabilis) | | | | | | Upper sub-alpine level Central Nepalese biogeographical region 20 3110 North Himalayan alpine vegetation Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 26 3203 Fir forest (Abies spectabilis) | | | | | | Upper sub-alpine level Central Nepalese biogeographical region203110North Himalayan alpine vegetationUpper sub-alpine level Eastern Nepalese biogeographical region213120Betula utilis forest with Rhododendron and Abies spectabilis3200-3900223121Rhododendron shrublands3300-3900233122Rhododendron-Juniper shrublands3600-3900Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | 203110North Himalayan alpine vegetationUpper sub-alpine level Eastern Nepalese biogeographical region213120Betula utilis forest with Rhododendron and Abies spectabilis3200-3900223121Rhododendron shrublands3300-3900233122Rhododendron-Juniper shrublands3600-3900Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | Upper sub-alpine level Eastern Nepalese biogeographical region 21 3120 Betula utilis forest with Rhododendron and Abies spectabilis 3200-3900 22 3121 Rhododendron shrublands 3300-3900 23 3122 Rhododendron-Juniper shrublands 3600-3900 Lower sub-alpine level West Nepalese biogeographical region 24 3201 Mesophytic Fir forest with oak and rhododendron 2900-3400 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 26 3203 Fir forest (Abies spectabilis) | | | | | | 213120Betula utilis forest with Rhododendron and Abies spectabilis3200-3900223121Rhododendron shrublands3300-3900233122Rhododendron-Juniper shrublands3600-3900Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | 223121Rhododendron shrublands3300-3900233122Rhododendron-Juniper shrublands3600-3900Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | 233122Rhododendron-Juniper shrublands3600-3900Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | Lower sub-alpine level West Nepalese biogeographical region243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | 243201Mesophytic Fir forest with oak and rhododendron2900-3400253202Hygrophytic Fir-Hemlock-Oak forest2800-3300263203Fir forest (Abies spectabilis) | | | | | | 25 3202 Hygrophytic Fir-Hemlock-Oak forest 2800-3300 26 3203 Fir forest (<i>Abies spectabilis</i>) | | | | | | 26 3203 Fir forest (Abies spectabilis) | | | | | | | | | | | | Lower sub-alning level Fastern Nanalese higgographical region | | | | | | Lower Sub-alphile level Lastern Nepalese biogeographical region | | | | | | 27 3220 Abies spectabilis forest with rhododendron 2900-3600 | | | | | | 28 3221 Larix griffithiana forest 2900-3600 | | | | | | 29 3222 Larix griffithiana, L. potanini forest | | | | | | 30 3223 Larix potanini forest | | | | | | Steppic formations | | | | | | North-West Nepalese biogeographic region | | | | | | 31 8001 High altitude cushion plant formation | | | | | | 32 8002 Caragana versicolor, Lonicera spinosa steppe | | | | | | 33 8003 Caragana gerardiana, Lonicera spinosa xerophile steppe | | | | | | 34 8004 Caragana bresispina, Artemisia steppe | | | | | | 35 8005 Caragana pygmaea, Lonicera spinosa xerophile steppe | | | | | | 36 8006 <i>Myricaria-Hippophae-Salix</i> riverine thickets | | | | | | SN | Code | Name of ecosystem | Altitude (m) | | | | |---|--|---|--------------|--|--|--| | 37 | 8007 | Sophora moorcroftiana, Oxytropis mollis steppe | | | | | | Midh | Midhills physiographic zone | | | | | | | Mon | Montane level | | | | | | | Mon | Montane West Nepalese biogeographic region | | | | | | | 38 | 4001 | Mesophytic monatne Oak-Rhododendron forest | 2450-2900 | | | | | 39 | 4002 | Mixed Blue Pine-Oak forest | 2500-3000 | | | | | 40 | 4003 | Mixed hygrophytic Oak-Hemlock-Fir forest | 2400-2900 | | | | | 41 | 4004 | Open and dry monatne Blue Pine forest | | | | | | 42 | 4005 | Blue Pine-Spruce forest | | | | | | 43 | 4006 | Juniper forest (Juniperus indica) | | | | | | 44 | 4007 | Rhododendron-Hemlock-Oak forest | | | | | | 45 | 4008 | Hemlock forest (Tsuga dumosa) | | | | | | 46 | 4009 | Mountain Oak forest (Quercus semecarpifolia) | | | | | | 47 | 4010 | Blue Pine-Spruce-Fir forest | | | | | | 48 | 4011 | Spruce mountain forest (Picea smithiana) | | | | | | Montane Eastern Nepalese biogeographic region | | | | | | | | 49 | 4020 | Lithocarpus pachyphylla forest | 2400-2900 | | | | | 50 | 4021 | Rhododendron cinnamonmeum forest | 2400-2900 | | | | | 51 | 4022 | Deciduous mixed broad-leaved forest | 2400-2900 | | | | | 52 | 4023 | Mixed broadleaved forest, Rhododendron-Acer_Symplocus-Lauraceae | 2400-2900 | | | | | 53 | 4024 | Daphniphyllum himalayense forest with a few Rhododendron grande | 2100-2900 | | | | | Colli | nean level | | | | | | | Colli | nean West I | Nepalese biogeographic region | | | | | | 54 | 5000 | Blue Pine-Cypress forest | 2300-2700 | | | | | 55 | 5001 | Cypress forest with dwarf Barberry | 1850-2400 | | | | | 56 | 5002 | Collinean Oak forest (Quercus leucotrichophora, Q. lanata) | 2000-2500 | | | | | 57 | 5003 | Mixed Blue Pine-Oak forest | 1800-2500 | | | | | 58 | 5004 | Mixed Oaks-Laurels forest with shrubs | 1500-2500 | | | | | 59 | 5005 | Mixed hygrophytic broad-leaved forest with oaks | | | | | | 60 | 5006 | Cedar forest (Cedrus deodara) | | | | | | 61 | 5007 | Open Blue Pine forest (Pinus wallichiana) | | | | | | 62 | 5008 | Collinean Oak-mixed broadleaved forest (Q. lanata) | | | | | | 63 | 5009 | Aesculus, Juglans riverine forest | | | | | | 64 | 5010 | Deciduous broadleaved forest (Alnus, Juglans, Acer) | | | | | | Collinean Central Nepalese biogeographic region | | | | | | | | 65 | 5011 | Hygrophytic <i>Quercus lamellosa</i> forest | | | | | | | | | | | | | | SN | Code | Name of ecosystem | Altitude (m) | | |--------------------|-------------|--|--------------|--| | Colli | nean Easte | ern Nepalese biogeographic region | | | | 66 | 5012 | Hygrophytic forest with Quercus lamellosa | 1800-2400 | | | 67 | 5013 | Hygrophytic forest with Castanopsis tribuloides | | | | 68 | 5014 | Mesohygrophytic forest with Quercus glauca | | | | 69 | 5015 | Mesohygrophytic forest with Quercus lanata, Pinus excelsa | | | | Sub- | tropical le | vel | | | | Sub- | tropical Ea | astern Nepalese biogeographic region | | | | 70 | 6001 | Eugenia tetragona, Ostodes paniculata forest | 900-1700 | | | Uppe | er sub-trop
 ical West Nepalese biogeographic region | | | | 71 | 6101 | Mixed Chir Pine-Oak forest (Pinus roxburghii, Q. leucotrichophora) | 1400-1900 | | | 72 | 6102 | Quercus glauca, Alnus nepalensis, Betula alnoides riverine forest | 1400-1800 | | | 73 | 6103 | Open <i>Olea cuspidata</i> forest | | | | 74 | 6105 | Sub-tropical mixed broadleaved forest | | | | 75 | 6106 | Quercus incana, Schima wallichii forest | | | | Uppe | er sub-trop | ical Central Nepalese biogeographic region | | | | 76 | 6109 | Hygrophytic Schima wallichii, Castanopsis tribuloides forest | | | | Uppe | er sub-trop | ical Eastern Nepalese biogeographic region | | | | 77 | 6110 | Castanopsis tribuloides forest with Schima walichii, | 1400-1900 | | | 78 | 6120 | Castanopsis hystrix forest with C. tribuloides | 1400-1900 | | | 79 | 6121 | Alnus nepalensis forest | 1200-2400 | | | Uppe | er and lowe | er sub-tropical West Nepalese biogeographic region | | | | 80 | 6201 | Chir Pine forest with grasses and <i>Engelhardria</i> | 900-1900 | | | 81 | 6202 | Mixed Chir Pine-Broadleaved forest | 900-1400 | | | 82 | 6203 | Alnus nepalensis riverine forest | 800-2000 | | | 83 | 6204 | Euphorbia royleana steppe in inner valleys | | | | 84 | 6207 | Grasses-Artemisia steppe | | | | Uppe | er and lowe | er sub-tropical Central Nepalese biogeographic region | | | | 85 | 6109 | Hygrophytic Schima wallichii, Castanopsis tribuloides forest | | | | Uppe | er and lowe | er sub-tropical Eastern Nepalese biogeographic region | | | | 86 | 6220 | Schima wallichii, Castanopsis indica hygrophile forest | 900-1400 | | | 87 | 6221 | Schima wallichii, Pinus roxburghii mesohygrophile forest | | | | 88 | 6222 | Pinus roxburghii xerophile forest with Phyllanthus emblica | | | | 89 | 6223 | Schima wallichii, Lagerstromia parviflora hygrophile forest | | | | Siwa | liks physi | ographic zone | | | | Sub-tropical level | | | | | | Uppe | er sub-trop | ical Western Nepalese biogeographic region | | | | 91 6205
92 6206 | Upper Siwalik Chir Pine-Oak forest wer sub-tropical Western Nepalese biogeographic region Siwaliks Chir Pine forest Alnus nitida riverine forest | | | | | | |---|---|----------|--|--|--|--| | 91 6205
92 6206 | Siwaliks Chir Pine forest | | | | | | | 92 6206 | | | | | | | | | Alnus nitida riverine forest | | | | | | | | | | | | | | | Tropical leve | Tropical level | | | | | | | Upper tropic | al West Nepalese biogeographic region | | | | | | | 93 7101 | Tropical hill Sal forest in large valleys | 450-1000 | | | | | | 94 7102 | Tropical riverine forest (Albizia lebbek, toona ciliata,) | 450-1000 | | | | | | 95 7103 | Sal forest in inner valleys (Shorea robusta, Terminalia tomentosa) | 600-1000 | | | | | | 96 7104 | Mesophytic tropical forest on southern slopes of the Siwaliks | 350-900 | | | | | | 97 7105 | Hygrophytic tropical forest on northern slopes of the Siwaliks | 350-900 | | | | | | 98 7106 | Siwalik tropical deciduous forest | | | | | | | Upper tropic | al East Nepalese biogeographic region | | | | | | | 99 7120 | Tropical hill Sal forest | 350-900 | | | | | | 100 7122 | Dense forest with Shorea robusta, Lagerstromia parviflora, | | | | | | | 101 7123 | Dense forest with Terminalia tomentosa, T. belerica, | | | | | | | Lower tropical level West Nepalese biogeographic region | | | | | | | | 102 7204 | Dun valleys Sal forest | | | | | | | Terai physiographic zone | | | | | | | | Tropical level | | | | | | | | Upper tropical Eastern Nepalese biogeographic region | | | | | | | | 103 7121 | Tropical riverine forest | | | | | | | 104 7124 | Sal forest (Shorea robusta) | | | | | | | Upper tropical Western Nepalese biogeographic region | | | | | | | | 105 7201 | Tarai tropical Sal forest (Shorea robusta, Terminalia tomentosa,) | | | | | | | 106 7202 | Khair-Sissoo riverine forest | 150-350 | | | | | | 107 7203 | Samalia malabarica, Trewia nudiflora riverine forest | | | | | | | 108 7205 | Bhabaar light Sal forest | 75-300 | | | | | | 109 7206 | Pseudo steppe with Graminae, Tropical elephant grasses | | | | | | | Lower tropical Eastern Nepalese biogeographic region | | | | | | | | 110 7220 | Tarai tropical Sal forest | | | | | | | 111 7221 | Tropical mixed wet forest | | | | | | | 112 7222 | Tropical dense forest with <i>Terminalia sp.</i> | | | | | | | Other ecosy | stems (in all zones) | | | | | | | 113 1000 | Glaciers, snow, rock (Highlands, Nival level) | >4800 | | | | | | 114 9900 | Water bodies (Highlands, Midhills, Terai) | | | | | | | SN | Code | Name of ecosystem | Altitude (m) | |-----|------|-------------------------------------|--------------| | 115 | 9003 | Pokhara cultivated areas (Midhills) | | | 116 | 9001 | Dun cultivated areas (Siwaliks) | | | 117 | 9000 | Cultivated areas (Terai) | | | 118 | 9002 | Terai cultivated areas (Terai) | | ## 2.5 TISC (2002) The Tree Improvement and Silviculture Component (TISC) of the Natural Resource Management Sector Assistance Programme (NARMSAP) implemented by the then Department of Forest prepared the isopotential vegetation map of Nepal based on the ecological maps prepared by Dobremez and his colleagues (1969-1985) and Nepal's ecosystem classification by BPP. International Union for Conservation of Nature (IUCN) assessed them and recommended 59 vegetation types in Nepal. TISC further reduced them to 36 classes to simplify the mapping of the climax and near-climax vegetation into homogenous ecological areas representing the iso-potential area for a particular vegetation type (TISC 2002). TISC classifies Nepal's vegetation according to six main life zones, with sub-zones for some of them (Table 8) (TISC 2002). It also considers four biogeographic regions as identified by Dobremez (1976), i.e. Eastern Nepalese biogeographic region, Central Nepalese biogeographic region with a sub-region on the northern side, Western Nepalese biogeographic region with a sub-region on the northern side, and Trans-Himalayan biogeographic region, while describing vegetation types. Table 8: Life zones in Nepal as described by TISC (2002) | Zone | Average altitude (m) | Description/Key species | |---------------------|----------------------|---| | 1. Nival | >5000 | Above snowline (5000m in E, C but 4800 in W, and 5500 in Trans- Himalaya). A zone of permanent snow. | | 2. Alpine | 4000-5000 | Between treeline (3700-4200m) and snowline (4800-5000m, 5500 in Transhimalaya). A zone of alpine grasslands and rangelands, associated with <i>Juniperus</i> thickets, Rhododendron bushes and cushion formations; exhibits much variation between N and S slopes and longitudes. | | 2.1 Upper Alpine | 4500-5000 | Open meadows of grasses (Gramineae) and sedges
(Cyperaceae) and alpine scrub vegetation on the south of main
Himalaya; steppic vegetation of cushion plants and rosettes on
Transhimalayan region | | 2.2 Lower Alpine | 4000-4500 | Juniperus thickets, Rhododendron bushes | | 3. Subalpine | 3000-4000 | Between Abies spectabilis zone (about 3000m) and treeline (3700-4200m). A zone of <i>Abies, Betula and Rhododendrons</i> . | | 3.1 Upper Subalpine | 3500-4000 | Betula utilis, pure or associated with Rhododendrons | | 3.2 Lower Subalpine | 3000-3500 | Abies spectabilis, pure or associated with Tsuga dumosa,
Quercus semecarpifolia, Rhododendrons | | 4. Temperate | 2000-3000 | Over 40% of Nepal's vegetation types; a zone of <i>Quercus</i> and Conifer forests, associated with <i>Acer</i> and <i>Rhododendrons</i> . | | Zone | Average altitude (m) | Description/Key species | |---|----------------------|---| | 4.1 Upper Temperate
(Cool Temperate) | 2500-3000 | Quercus semecarpifolia, pure or associated with Rhododendron arboreum, Acer species, Lithocarpus spicata (east), Pinus wallichiana, Picea smithiana, Tsuga dumosa (west), Rhododendrons; Lithocarpus pachyphylla forest | | 4.2 Lower Temperate
(Warm Temperate) | 2000-2500 | Mixed Quercus species forests, e.g. Q. incana, Q. lanata (main), N-aspect: Q. floribunda (W), Q. glauca, Q. lamellosa (E,C); Pinus wallichiana forest | | 5. Subtropical | 1000-2000 | Zone of <i>Pinus roxburghii</i> in west and <i>Castanopsis-Schima</i> in Centre/East; <i>Pinus roxburghii</i> -mixed broadleaved forest (C) | | 6. Tropical | <1000 | Tarai, Bhavar, Dun valleys, and low lying river terraces (Tars), e.g. Tumlingtar, Batar, Salyantar, Palungtar etc.; <i>Shorea robusta</i> and savannah dominated. | | 6.1 Upper Tropical | 300-1000 | Churia hills and their foothills, dun valleys; zone of <i>Hill Shorea</i> robusta, with <i>Terminalia, Anogeissus, Lagerstoemia, Adina</i> | | 6.2 Lower Tropical | <300 | Tarai and Bhabar zones; Shorea robusta, with Duabanga
grandiflora, Terminalia chebula, T. belerica, Dillenia pentagyana
etc.; tropical savannah | The 36 climax or near-climax vegetation types were classified in the five bioclimatic zones including Alpine (3), Sub-alpine (7), Temperate (17), Subtropical (4), Upper Tropical (1), Lower Tropical (1), and Trans-Himalayan zones (3). The TISC's vegetation types, altitudinal range, and species association are summarized in Table 9. Table 9: Vegetation types in Nepal as described by TISC (2002) | SN | Vegetation type | Distribution | Species association | | | |--------|-------------------------
---|---|--|--| | | Alpine Zone | | | | | | 1 | Upper Alpine
Meadows | 4500-5000m, High
Himalayan and Trans-
Himalayan regions | Grasses like Carex species, Calamogrotis species, Agrotis micantha, Festuca leptogunum, Sedges (Cyperaceae); Primula species, Rheum nobile, Kobresia hookeri, K. pygmaea, Chrysosplenium species, Potentilla peduncularis, Bistorta vaccinifolia, Poa pogophylla, Arenaria kansuensis (east), xerophytic, mesophytic patchy vegetation (west); cushion plants (e.g. Caragana) in Trans-Himalaya | | | | 2 | Dry Alpine Scrubs | Down to 3000m in some places | Dwarf and prostrate junipers: Juniperus indica,
J. recurve, J. squamata, with Ephedra gerardiana,
Cassiope fastigiate, Potentilla fruticose, Berberis
species, sedum species | | | | 3 | Moist Alpine Scrub | Mainly in the east | Dwarf Rhododendrons (Rhododendron anthopogan, R. nivale, R. setosum, R. hypenanthum) at higher elevations, and shrubby Rhododendrons (R. campanulatum, R. wallichii, R. campylocarpum, R. thomsonii, R. wightii, R. fulgens) at lower elevations | | | | Sub-al | pine Zone | | | | | | SN | Vegetation type | Distribution | Species association | |------|---|---|--| | 4 | Fir-Blue Pine Forest | Side valleys of the
Kaligandaki | Abies species, Pinus wallichiana | | 5 | Birch-
Rhododendron
Forest | typical of this zone, on
north, shady slopes
and ravines | Betula utilis, Abies spectabilis, Sorbus macrophylla, Acer species, Rhododendron campalunatum, R. campylocarpum, R. cinnabarinum, R. hodgsonii; with Juniperus species in dry valleys | | 6 | Fir Forest | 3300-3500m,
widespread between
the Kaligandaki and
Sunkoshi valley | Abies spectabilis, with Rhododendron arboretum,
R. barbatum, R. hodgsonii, R. campanulatum
(east); Quercus semecarpifolia (Humla-Jumla
area) | | 7 | Larch Forest | On morainic debris
with loose rocks and
boulders | Larix himalaica (central – Manaslu and Langtang areas), Larix griffithiana (eastern – Simbua khola and Thapabu khola near Khambachen), with Abies species, Pinus wallichiana, Betula utilis | | 8 | Fir-Oak-
Rhododendron
Forest | Confined in lower alpine zone of Bajhang and Doti | Abies species, Quercus species, Rhododendron species | | 9 | Fir-Hemlock-Oak
Forest | 2800-3400m, humid
western Midhills | Abies spectabilis, with Tsuga dumosa (north),
Quercus semecarpifolia (south), Taxux wallichiana | | 10 | Sub-alpine
Mountain Oak
Forest | 3400-3700m on southern aspect | Quercus semecarpifolia | | Temp | erate Zone | | | | 11 | Upper Temperate
Blue Pine Forest | 2500-3000m, south and south-western aspects | Pinus wallichiana (Syn.: P. excelsa, P. chylla, P. griffithii), with Abies spectabilis, Betula utilis (upper range) | | 12 | Temperate Juniper
Forest | Dhorpatan area | Generally pure forest of <i>Juniperus species</i> , but with a few <i>Abies, Betula and Quercus</i> trees on fringes | | 13 | Spruce Forest | 2000-3000m, shady
slopes west of the
Trisuli; e.g. west of
Rara and Chankheli
ridge in Mugu | Picea smithiana, Pinus wallichiana, Abies pindrow | | 14 | West Himalayan
Fir-Hemlock-Oak
Forest | 2100-3000m, west of
the Karnali | Abies pindrow, with Picea smithiana (Karnali region), Tsuga dumosa, Quercus semecarpifolia (Seti region) | | 15 | Temperate
Mountain Oak
Forest | Above 2500m,
widespread in the
west | Quercus semecarpifolia, with Tsuga dumosa,
Rhododendron species, Acer species (humid
slopes), Laurels (Neolitsea umbrosa, Lindera
pulcherrima, Dodecadenia grandiflora) [centre and
east], Pinus wallichiana (dry sites, e.g. Dhorpatan
area) | | | | | | | SN | Vegetation type | Distribution | Species association | |---------|---|---|---| | 16 | Lithocarpus Forest | 2600-3000m, in Tamur
valley and ridges in
Sikkim border | Lithocarpus pachyphylla, with Quercus lamellosa,
Q. lineata, llex dipyrena, Michelia doltsopa,
Magnolia campbellii | | 17 | Rhododendron
Forest | Milke-Jaljale ridge | Rhododendron arboreum, with R. barbatum, R. campanulatum | | 18 | Mountain Oak-
Rhododendron
Forest | 2500-2900m, all aspects in far west | Quercus semecarpifolia, Rhododendron arboreum | | 19 | Deciduous Maple-
Magnolia-Sorbus
Forest | 2500-3000m, Arun and
Tamur valleys | Magnolia campbellii, Acer campbellii, with
Rhododendron barbatum, Symplocos pyrifolia in
the second layer | | 20 | Mixed
Rhododendron-
Maple Forest | 2600-3000m,
widespread in Arun
and Tamur valleys | Rhododendron arboreum, Acer campbellii, A.
sterculiaceum, A. pectinatum, with Symplocos
species, Ilex species, Taxus wallichiana, Tsuga
dumosa | | | | · · · · · · · · · · · · · · · · · · · | (corresponding to Stainton's upper temperate mixed broadleaved forest) | | 21 | Cedar Forest | 2000-3000m, in
Karnali region (e.g. in
the Tila river valley) | Cedrus deodara, Cupressus torulosa, Olea
ferruginia, Pinus wallichiana | | 22 | Cypress Forest | 2000-2500m, in dry,
steep, high wind areas,
in the west | Cupressus torulosa, Abies spectabilis, Betula utilis,
Juniperus indica, Pinus wallichiana | | 23 | Mixed Blue Pine-
Oak Forest | 2000-2500m, as
a result of human
disturbances in oak
forest | Pinus wallichiana, Quercus lanata, Q. dilatata,
Castanopsis tribuloides | | 24 | Lower Temperate
Oak Forest | 2000-2500m,
widespread in the
west | Quercus incana, Q. lanuginosa, Q. glauca, with
Rhododendron arboreum, Lyonia ovalifolia, Myrica
esculenta, Cornus capitata | | 25 | Deciduous Walnut-
Maple-Alder Forest | 2100-2900m, along
streams and ravines in
the west | Aesculus, Juglans, Acer, Populus, Betula, Corylus,
Ulmus species, with Abies pindrow, Tsuga dumosa,
Quercus dilatata | | 26 | East Himalayan
Oak-Laurel Forest | High rainfall areas,
e.g. Arun and Tamur
valleys, Annapurna-
Dhaulagiri region | Quercus lamellosa, Q. glauca, Q. oxydon (Q. lineata), Litsea elongata, Machilus duthei, M. odoratissima, Dodecadenia grandiflora, Neolitsea umbrosa, Lindera pulcherrima, Symplocos species, Daphniphyllum himalayense, Mahonia napaulensis | | 27 | Olea Forest | 1500-2000m, in the upper Bheri valley | Olea cuspidate, O. glandulifera, with Capparis
spinosa, Pistachia integerrima, Punica granatum,
Cedrus deodara | | Sub-tro | opical Zone | | | | 28 | Chir Pine Forest | 1000-2000m, on all aspects in the west, and south aspect in centre and east | Generally pure forest of <i>Pinus roxburghii</i> , with
<i>Quercus species</i> in the upper limit and <i>Shorea</i>
<i>robusta</i> in the lower limit, <i>Engelhardia spicata</i> ,
<i>Toona ciliata</i> in damp ravines and gullies | | | | | | | SN | Vegetation type | Distribution | Species association | | |--------|---------------------------------------|--|---|--| | 29 | Chir Pine-
Broadleaved Forest | 1000-2000m,
widespread in west
than east | Pinus roxburghii, Quercus incana, Q. lanata,
Rhododendron arboreum, Lyonia ovalifolia,
Engelhardia spicata, Erythrina stricta, Schima
wallichii | | | 30 | Schima-
Castanopsis Forest | 1000-2000m | Schima wallichii, with Castanopsis indica (1000-1500m), C. tribuloides (1500-2000m, abundant in Arun and Tamur valleys), C. hystrix (east). Alder (Alnus species) Forest occurs in Schima-Castanopsis belt. | | | 31 | Eugenia-Ostodes
Forest | Far east up to Tamur
valley | Eugenia tetragona, Ostodes paniculata | | | Upper | r Tropical Zone | | | | | 32 | Hill Sal Forest | 300-1000m | Shorea robusta, with Terminalia, Anogeissus,
Lagerstroemia, Adina species | | | Lowe | Lower Tropical Zone | | | | | 33 | Lower Tropical Sal a | nd Mixed Broadleaved Fo | orest | | | 33.1 | Lower Tropical Sal F | orest | Shorea robusta, with Careya arborea, Ehretia laevis,
Semecarpus anacardium, Dillenia pentagyna, D.
indica, Butea frondosa | | | 33.2 | Mixed Broadleaved | Forest | | | | 33.2. | 1 Terminalia Forest | Below 1000m, along
narrow river valleys
and foothills of
Siwaliks | Terminalia tomentosa, T. belerica, T. chebula, T.
myriocarpa | | | 33.2.2 | Tropical Evergreen Forest | Along water courses and wet gullies | Michelia champaca, Eugenia jambolana, Albizia
species, Cedrela toona, Artocarpus fraxinifolius,
with palms, bamboos, canes, tree ferns, cycads | | | 33.2.3 | Tropical Deciduous
Riverain Forest | Consolidated river terraces | Salmalia malabaricum, Holoptelea integrifolia,
Schleichera trijuga, Ehretia laevis, Trewia
nudiflora,
Garuga pinnata, Shorea robusta | | | 33.2.4 | Riverain Khair-
Sissoo Forest | 70-500m, along water courses | Acacia catechu, Dalbergia sissoo | | | | | | | | | SN | Vegetation type | Distribution | Species association | | | |--------|--|--------------|---|--|--| | | Savannah/
Grasslands | Below 300m | The dominant grassland species found in the Tarai and Dun valleys are described as follows: | | | | | | | a) Typha elephantica (permanently waterlogged sites) | | | | | | | b) Phragmitis karka-Saccharum spontaneum-S.
arundinaceum (seasonally inundated, heavily
grazed sites) | | | | | | | c) Phragmitis karka (seasonal and permanent marsh) | | | | 33.2.5 | | | d) Phragmitis karka-Saccharum spontaneum (seasonal and permanent marsh) | | | | | | | e) Saccharum spontaneum (flood plain, alluvial soil, often inundated) | | | | | | | f) Imperata cylindrica | | | | | | | g) Narenga porphyrocoma (old river terraces, wetter sites) | | | | | | | h) Themeda arundinaceae (well-developed soils, forest edges) | | | | 34 | Trans-Himalayan
Upper Caragana
Steppe | Above 3500m | Caragana versicolor, Lonicera spinosa | | | | 35 | Trans-Himalayan
Lower Caragana
Steppe | | Caragana gerardiana, Artemisia species, Berberis
species, Lonicera myrtilloides, Potentilla fructicosa | | | | 36 | Trans-Himalayan
High Alpine
Vegetation | Above 4500m | Androsace tapete, Allardia glabra, Eriophyton
wallichianum, Rhododendron nivale, Androsace
muscoides, Picrorhiza scrophulariifolia, Oresolon
watti | | | The spatial extent and distribution of the above vegetation types are illustrated in the TISC's (2002) vegetation map (Figure 2). However, the map showing 36 vegetation types and permanent snow (Nival zone) does not show the 'Deciduous Walnut-Maple-Alder Forest' described in the report, whereas it shows the 'Oak-Horse Chestnut-Maple Forest', which has not been described elsewhere in the report. Figure 2: Iso-potential vegetation map of Nepal (TISC 2002) # 2.6 DFRS (2014, 2015) The Forest Resource Assessment (FRA) Nepal Project under the Department of Forest Research and Survey (DFRS) carried out the third nationwide forest inventory between 2010 and 2014. Using the information collected during the inventory (forest type data from 907 plots) as training data, FRA/DFRS also carried out a forest mapping applying machine learning Classification and Regression Tree (CART) process with Landsat 8 image. The standard guidelines prepared for that mapping classify Nepal's forests into 25 types in the five physiographic regions, namely Terai, Churia, Mid Hills, High Hills, and High Himal (Table 10) (DFRS 2014). Table 10: Forest types in Nepal as described by DFRS (2014) | SN | Forest Types (Level 3) | Definitions | |------|--|---| | Tera | ni physiographic region | | | 1 | Shorea robusta (Sal) forest | Forest where the basal area of <i>Shorea robusta</i> is >60% of the total basal area | | 2 | Terai Mixed Hardwood
(TMH) forest | Forest of mixed species at an altitude <1000m (Shorea robusta, Terminalia, Eugenia, Trewia, Lagerstroemia, Adina, and Cedrela species etc.) where the basal area of Shorea robusta is <33% of the total basal area. | | 3 | Acacia catechu-Dalbergia
Sissoo forest | Forest of mixed species (Acacia catechu/Darbergia sissoo) found on the floodplains and the riverbanks; it can be natural or plantation. | | 4 | Sal mixed with Terai Mixed
Hardwood (STMH) forest | Mixed forest in the Terai, where the basal area of Sal (<i>Shorea robusta</i>) is between 33 and 60% of the total basal area. | | Chu | ria [<i>Chure</i>] physiographic reg | ion | | 5 | Shorea robusta (Sal) forest | Forest where the basal area of <i>Shorea robusta</i> is >60% of the total basal area | | 6 | Terai Mixed Hardwood
(TMH) forest | Forest of mixed species at an altitude <1000m (Shorea robusta, Terminalia, Eugenia, Trewia, Lagerstroemia, Adina, and Cedrela species etc.) where the basal area of Shorea robusta is <33% of the total basal area. | | 7 | Lower Mixed Hardwood
(LMH) forest | Forest of mixed species in the Churia region between 1000 and 2000m. | | 8 | Chir Pine forest | Forest in which <i>Pinus roxburghii</i> is dominant; it can be natural or plantation. | | 9 | Acacia catechu-Dalbergia
Sissoo forest | Forest of mixed species (Acacia catechu/Darbergia sissoo) found on the floodplains and the riverbanks; it can be natural or plantation. | | 10 | Sal mixed with Terai Mixed
Hardwood (STMH) forest | Mixed forest in which the basal area of Sal (<i>Shorea robusta</i>) is between 33 and 60% of the total basal area. | | 11 | Sal mixed with Chir Pine forest | Mixed forest in the Churia region, where neither Sal (Shorea robusta) nor Chir Pine (Pinus roxburghii) occupies more than 60% of the total basal area. | | Mid | Hills physiographic region | | | 12 | Upper Mixed Hardwood
(UMH) forest | Forest of mixed hardwood species in the Mid Hills above 2000m. | | 13 | Chir Pine forest | Forest in which <i>Pinus roxburghii</i> is dominant, i.e., its basal area is >60% of the total; it can be natural or plantation. | | 14 | Schima-Castanopsis forest | Forest dominated by <i>Schima wallichii</i> and <i>Castanopsis indica</i> , i.e., both combinedly having >60% of the total basal area. | | 15 | Shorea robusta (Hill Sal)
forest | Forest in the Mid Hills where the basal area of <i>Shorea robusta</i> is >60% of the total basal area. | | Higl | n Hills physiographic region | | | 16 | Upper Mixed Hardwood
(UMH) forest | Forest of mixed hardwood species in the High Hills above 2000m. | | 17 | Rhododendron forest | Forest predominated by <i>Rhododendron species</i> at altitude above 2400m. | | | | | | 18 | Blue Pine forest | Forest in which <i>Pinus wallichiana</i> is dominant, i.e., its basal area is >60% of the total; it is distributed in areas between 1800 and 4000m with abundance on south-facing slopes at the lower altitudes. | |-----|---|---| | 19 | Quercus semecarpifolia
forest | Forest dominated by <i>Quercus semecarpifolia</i> , found between 2400 and 3000m in Central and Eastern Nepal. | | 20 | Abies spectabilis forest | Forest dominated by Abies spectabilis, often associated with <i>Quercus</i> semecarpifolia, Betula utilis, Rhododendron species, and Larix griffithiana, found between 3000 and 3500m. | | 21 | Betula utilis forest | Forest dominated by <i>Betula utilis</i> , found between 3300m and tree line. It is often pure, but also associated with <i>Rhododendron</i> and <i>Acer species</i> , and also with <i>Abies spectabilis</i> and <i>Quercus semecarpifolia</i> in the western Nepal. | | 22 | Juniperus forest | Forest predominantly covered by Juniperus species. | | 23 | Upper Mixed Conifer (Spruce, Deodar, Larch, Abies pindrow) forest | Forest of mixed species like Spruce, Deodar, Larch, Abies pindrow etc. | | Hig | h Himal physiographic region | | | 24 | Rhododendron bush (Dwarf
Rhododendron) | Bush of Rhododendron species. | | 25 | Betula utilis forest | Forest of <i>Betula utilis</i> along with other species found in alpine and subalpine regions. | | | | | Although the guidelines describe 25 forest types across five physiographic regions as presented in Table 10, 17 forest types are identified after excluding the forest types listed more than once in different physiographic regions. However, DFRS further consolidated forest types into the following 15 types and generated a forest type map of Nepal (Figure 3) by integrating object-based image analysis with machine learning algorithm (DFRS 2015). - 1) Terai Mixed Hardwood Forest - 2) Upper Mixed Hardwood Forest - 3) Lower Mixed Hardwood Forest - 4) Shorea robusta (Sal) Forest - 5) Chir Pine (*Pinus roxburghii*) Forest - 6) Quercus Species Forest - 7) Blue Pine (Pinus wallichiana) Forest - 8) Abies spectabilis and Abies pindrow Forest - 9) Acacia catechu-Dalbergia sissoo Forest - 10) Betula utilis Forest - 11) Cedrus deodara Forest - 12) Picea smithiana Forest - 13) Cupressus torulosa Forest - 14) Tsuga Dumosa Forest - 15) Juglans wallichiana Forest Figure 3: Forest type map of Nepal (DFRS 2015) Further, the analysis of the FRA's plot-level data (N=1436, excluding outliers) gives 45 forest types as presented in Table 11. All of them might have not been mapped because of the insufficiency of training data for many forest types. Table 11: Forest types in Nepal identified through the analysis of FRA data | SN | Forest Type | No. of signature | Min altitude | Max altitude | |----|---|------------------|--------------|--------------| | 1 | Shorea robusta Forest | 285 | 91 | 1353 | | 2 | Dalbergia sissoo forest | 5 | 98 | 1068 | | 3 | Tropical Mixed Broadleaved Forest | 359 | 119 | 1229 | | 4 | Tropical Deciduous Riverine Forest | 21 | 126 | 1266 | | 5 | Tectona grandis Forest | 1 | 140 | 140 | | 6 | Terminalia Forest | 21 | 167 | 1096 | | 7 | Tropical Evergreen Riverine Forest | 4 | 184 | 326 | | 8 | Anogeissus latifolius Forest | 9 | 190 | 974 | | 9 | Senegalia catechu Forest | 6 | 319 | 921 | | 10 | Pinus roxburghii-Mixed
Broadleaved Forest | 19 | 536 | 2065 | | 11 | Castanopsis-Schima forest | 26 | 540 | 2099 | | 12 | Pinus roxburghii-Shorea robusta Forest | 19 | 563 | 1443 | | 13 | Schima wallichii forest | 27 | 591 | 1965 | | 14 | Pinus roxburghii Forest | 82 | 684 | 2133 | | SN | Forest Type | No. of signature | Min altitude | Max altitude | |----|--|------------------|--------------|--------------| | 15 | Subtropical Mixed Broadleaved Forest | 73 | 864 | 2019 | | 16 | Alnus nepalensis Forest | 44 | 880 | 2498 | | 17 | Olea Forest | 1 | 1213 | 1213 | | 18 | Castanopsis forest | 8 | 1340 | 1906 | | 19 | Quercus lanata Forest | 19 | 1394 | 2810 | | 20 | Alnus nitida Forest | 2 | 1667 | 1867 | | 21 | Lower Temperate Mixed Broadleaved Forest | 83 | 1762 | 2587 | | 22 | Quercus incana Forest | 6 | 1815 | 2084 | | 23 | Pinus wallichiana-Mixed Broadleaved Forest | 6 | 1854 | 2112 | | 24 | Pinus wallichiana Forest | 28 | 1859 | 3788 | | 25 | Daphniphyllum himalayense Forest | 6 | 1893 | 1985 | | 26 | Rhododendron arboreum Forest | 35 | 1953 | 3434 | | 27 | Quercus semecarpifolia Forest | 51 | 2013 | 3730 | | 28 | Quercus-Rhododendron Forest | 23 | 2107 | 2725 | | 29 | Pinus patula Forest | 1 | 2162 | 2162 | | 30 | Cedrus deodara Forest | 5 | 2401 | 2670 | | 31 | Upper Temperate Mixed Broadleaved Forest | 39 | 2428 | 3176 | | 32 | Quercus floribunda Forest | 9 | 2482 | 3146 | | 33 | Upper Temperate Broadleaved-Conifer Mixed Forest | 28 | 2491 | 3180 | | 34 | Cupressus torulosa Forest | 2 | 2589 | 3291 | | 35 | Tsuga dumosa Forest | 12 | 2627 | 3163 | | 36 | Abies Forest | 19 | 2754 | 3604 | | 37 | Picea smithiana Forest | 5 | 2781 | 3024 | | 38 | Juglans regia Forest | 1 | 2804 | 2804 | | 39 | Upper Temperate Mixed Conifer Forest | 5 | 2854 | 3231 | | 40 | Rhododendron scrub | 4 | 3036 | 3795 | | 41 | Subalpine Broadleaved-Conifer Mixed Forest | 15 | 3102 | 3704 | | 42 | Betula utilis Forest | 9 | 3148 | 3765 | | 43 | Subalpine Mixed Broadleaved Forest | 6 | 3164 | 3884 | | 44 | Rhododendron barbatum Forest | 6 | 3165 | 4052 | | 45 | Juniperus recurva Forest | 1 | 3820 | 3820 | # 2.7 Miehe et al. (2015) Miehe et al. (2015) classify Nepal's vegetation by analysing the vegetation types in the broader Himalayan context through the ecological observations and photo documentation for about four decades (p.395) and also reviewing the past studies, including Schweinfurth (1957), Stainton (1972), Dobremez et al. (1970-1985), TISC (2002), Shrestha et al. (2002), and Lilleso et al. (2005). Vegetation classification by Miehe et al. (2015) uses four physical and biological attributes, including altitudinal belts, climatic zones, humidity types, and plant life forms and related formations, and also describes the intensity of human impacts on the vegetation. #### (A) Altitudinal belts: They consider the following seven altitudinal belts: - 1) Lowland: Tarai region - 2) Hill: Outer foothills and lower mountain slopes up to 1000m - 3) Submontane: intermediate between hill and montane between 1000-1200 and 2000m - 4) Montane: Between 2000 and 4000m (2000-2500m: lower cloud forest belt, 2500-3000m: middle cloud forest belt, 3000-treeline: upper cloud forest belt, subalpine: ecotone between montane forests and dwarf scrub formations) - 5) Alpine: above the upper limit of trees and taller shrubs on humid slopes - 6) Subnival: Transitional belt between the alpine and nival belt; relevant to humid areas - 7) Nival: the highest altitudinal belt with plants only in sheltered habitats #### (B) Climatic zones: Miehe et al. (2015) classify Nepal into five climatic zones for vegetation classification as below: - 1) Tropical: Tarai, Bhabar, Siwaliks, and Duns, i.e. below 1000m, where frost is absent - 2) Subtropical: Most parts of midlands between 1000 and 2000m - 3) Temperate: most parts of the southern slopes of the Himalayas and the valley floors of the Inner Valleys between 2000 and 3000m - 4) Cool: Higher slopes of the southern slope of the Himalayas and the Inner Valleys between 3000 and 4000m, with its upper limit at the treeline ecotone - 5) Cold: Between 4000 and 5000m, roughly corresponding to the alpine belt #### (C) Humidity types: They consider the following eight humidity types for classifying Nepal's vegetation. - 1) Perhumid: 12 humid months with continuously wet conditions - 1) Euhumid: 12 humid months, but less precipitation; dry air conditions can occur around midday. - 1) Subhumid: 11 humid months, and a short but distinct dry season - 1) Semi-humid: 7-10 humid months with a pronounced dry season - 1) Semi-arid: 4-6 humid months, with seasonality more pronounced than semi-humid - 1) Subarid: 2-3 humid months - 1) Euarid: 1 humid month or less, with annual precipitation ranging from 50 to 150mm - 1) Perarid: deserts, with only episodic precipitation (not present in Nepal) #### (D) Plant life forms and vegetation formations: Miehe et al. (2015) consider the plant life forms as one of the important attributes for identifying or naming the vegetation type. While a vegetation unit generally consists of different life forms, they name it after the tallest-growing, most conspicuous life form, using a threshold of 10% crown cover. For example, if trees' crown cover is 10% or more, the vegetation is named after tree formation, if less, it goes to shrub formation, then to herbaceous formation. The following seven plant life formations have been considered: - 1) Tree formations: single-stemmed woody phanerophytes, taller than 3m - 2) Shrubby formations: woody formations dominated by caespitose (multi-branched from the base) phanerophytes, sub-divided into scrub (taller than 0.5m) and dwarf scrub (shorter than 0.5m) - 3) Herbaceous formations: Vegetation unit where woody plants make up less than 10% of the cover, sub-divided into grasslands (dominated by graminoids) and forb communities (non-graminoid herbs, graminoids with less than 10% cover) - 4) Alpine mats: humid-alpine zonal formation dominated by cyperaceae - 5) Cushion communities: hemicryptophytic cushion plants in the upper alpine belt - 6) Chasmophytic vegetation: plants rooting in rock fissures - 7) Epilithic vegetation: plants adnate on rocks, with roots or rhizoids (e.g. moss, lichen on rocks) The classification of vegetation formations according to cover density and growth heights are given in Table 12. Table 12: Classification of vegetation formations by Miehe et al. (2015) | | Plant life form | Cover (%) / Height | Sub-formation | Formation | |---|-------------------------------------|---|--------------------|-----------| | | | 100-75 | Dense forest | Forest | | 1 | Tree | 75-50 | Light forest | rulest | | 1 | nee | 50-25 | Dense woodland | Woodland | | | | 25-10 | Sparse woodland | Woodianu | | | | 100-75 | Dense thicket | Thicket | | | | 75-50 | Light thicket | THICKEL | | 2 | Shrub | 50-25 | Open shrubland | | | | | 25-10 | Sparse shrubland | Shrubland | | | | <10 | Desertic shrubland | | | | Grass (according to density) | 100-75 | Dense grassland | _ | | | | 75-25 | Open grassland | | | 3 | 0 (| Caespitose grasses taller than 1m | Tall grassland | Grassland | | | Grass (according to growth heights) | Dominance of medium-sized grasses, 0.3-1.0m | Grassland | _ | | | neights) | Bunch grasses shorter than 30cm | Short grassland | | | | Alpine mat | 100-75 | Closed | | | | (according to density) | <75 | Open | | | 4 | Alpine mat | 25cm | Tall mat | Mat | | | (according to | 5-25cm | (medium-sized) mat | | | | growth heights) | <5cm | Dwarf mat | | #### (E) Human impact intensity: Miehe et al. (2015) use a scale of 0 to 6 for assessing severity of human impacts on vegetation as follows: - 1) Impact class 0: No evidence of human impact or anthropogenic disturbance on vegetation - 2) Impact class 1: Weakly disturbed vegetation, having little structural change; e.g. selective felling (<10%), presence of trails (<10% cover) - 3) Impact class 2: Evidently disturbed vegetation, e.g. 25% crown cover removed - 4) Impact class 3: Strongly disturbed vegetation, e.g. up to 50% of the crown cover lost - 5) Impact class 4: Widely replaced vegetation, e.g. <25 % of original crown cover left - **6) Impact class 5:** Replaced and degraded vegetation, e.g. vegetation structure has changed from forests to treeless pastures - 7) Impact class 6: Destroyed, e.g. lacks any perennial plants and has open soils, screes or bedrock #### **Vegetation classification** Miehe et al. (2015) classify Nepal's vegetation into 53 types, which includes all kinds of vegetation formations, i.e. forest, shrublands, and grasslands. Table 13 lists those vegetation types with their brief descriptions on environmental gradients, topography, biogeography and climatic conditions. Table 13: Vegetation types in Nepal as described by Miehe et al. (2015) | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | | | | |-----|---|---|--|---|---|--|--|--| | The | The vegetation types of the southern slopes of the Himalaya | | | | | | | | | The | tropical belt | | | | | | | | | 1 | Shorea
robusta forest | Shorea robusta, Terminalia alata,
T. bellirica, Dilenia pentagyna,
Adina cordifolia, Lagerstroemia
parviflora, Mallotus philippensis,
Bauhinia vahlii, B. variegata,
Semecarpus anacardium | Up to 1200m,
tropical, semi-
humid, E/C/W | Lowland to hill,
sandy to silty
colluvial soils |
Drought
deciduous,
broadleaved,
Tall, open
forest, 25-35m
tall | | | | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |-----|--|---|--|---|--| | 2 | Terminalia and
Anogeissus
forest | Terminalia tomentosa, T. chebula, T. bellirica, T. myriocarpa, Anogeissus latifolia, Glochidion velutinum, Croton oblongifolius, Garuga pinnata, Ehretia laevis, Sapium insigne, Syzigium cumini, Lagerstroemia parviflora, Dilenia pentagyna, Engelhardia spicata, Bauhinia variegata, Flacourtia indica, Lannea coromandelica | Up to 1200m,
tropical, semi-
humid, E/C/W
but common
in west | Duns, Siwaliks, lower midhills, shallow and rocky soils on south aspect (Anogeissus) or clay (Terminalia) | Drought deciduous, broadleaved, 10-15m tall, locally consisting entirely of Terminalia tomentosa or Anogeissus latifolia | | 3 | Riverine
grassland | Saccharum spontaneum,
Narenga porphyrocoma,
Themeda arundinaceae,
imperata cylindrica, Phragmites
karka, Arundo donax | 60-400m,
tropical, semi-
humid | Floodplains
and lower
terraces of the
great rivers
of the Duns,
Bhabar and
Tarai; clay,
loams, sands | Tall grassland | | 4 | Dalbergia
sissoo-Acacia
catechu
riverine forest | Dalbergia sissoo, Acacia
catechu, Tamarix dioica,
Zizyphus species, Murraya
koenigii, Callicarpa macrophylla | Up to 1200m,
tropical, semi-
humid, E/C/W | Young gravel
terraces along
the great
rivers, Acacia
also on south-
facing hill
slopes | Drought
deciduous,
broadleaved,
Pioneer
succession,
closed canopy,
12-15m tall | | 5 | Bombax
riverine forest | Bombax ceiba, Grewia
disperma, Celtis tetranda,
Croton roxburghii, Holarrhena
pubescens, Adina cordifolia | Up to 1400m,
tropical, semi-
humid | Older, stable river terraces in Duns, Bhabar, Tarai, succeeding Acacia-Dalbergia forest | Drought
deciduous,
broadleaved,
30m tall | | The | subtropical belt | | | | | | 6 | Schima-
Castanopsis
forest | Schima wallichii, Castanopsis
indica, C. tribuloides,
Engelhardia species, Magnolia
velutina, M. champaca, M.
hodgsonii, Betula alnoides,
Exbucklandia populnea | 1000-2000m,
subtropical,
subhumid to
semi-humid,
C/E | Hill, all aspects | Evergreen,
broadleaved | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |----|---|---|--|--|--| | 7 | Quercus lanata
forest | Quercus lanata, Rhododendron
arboreum, llex dipyrena,
Symplocos paniculata, Lindera
pulcherrima, Rhus wallichii,
Lyonia ovalifolia, Carpinus
viminea | 1500-2400m,
Subtropical,
submontane,
subhumid to
semi-arid | Dry, south-
facing, wind-
exposed sites | Evergreen,
broadleaved,
Climax, Multi-
storeyed, 15-
25m tall | | 8 | Pinus
roxburghii
forest | Pinus roxburghii (generally
pure), but with woodfordia
fruticosa, pyracantha
crenulata, Caryopteris foetida,
Rhododendron arboreum, Lyonia
ovalifolia | 500 to 1500-
1800m
(west), 800-
2000m (east)
Subtropical,
submontane,
subhumid
to semi-arid,
E/C/W | All exposures,
but south or
east exposures
in high rainfall
area | Evergreen,
conifer, Single
storeyed, max
40m tall, rarely
exceeding 70%
crown cover,
fire climax | | 9 | Toona ciliata-
Albizia
julibrissin
riverine forest | Toona ciliata, Albizia julibrissin,
pandanus nepalensis, cyathea
spinosa, Podocarpus nerifolius,
Magnolia hodgsonii, Saurauia
napaulensis | 600-1700m,
tropical to
subtropical,
hill to
submontane,
euhumid, E/C | Permanently
moist;
boulders, sand
and gravels
of mudflows,
along streams
of side valleys | Deciduous
to evergreen,
broadleaved,
edaphic climax | | 10 | Alnus
nepalensis
riverine forest | Alnus nepalensis (tree layer),
Urticaceae Acanthaceae, Lianas | 1000-2450m,
subtropical,
semi-humid
to euhumid,
submontane,
E/C/W | Along streams
and moist
mudflow
accumulations | Deciduous,
broadleaved,
pioneer,
evenaged, 30m
tall, edaphic
climax | | 11 | Euphorbia
royleana
grasslands | Grasses like Andropogon species, Themeda species, Cymbopogon species, Chrysopogon species, Arundinella species, Carex myosurus, Miscanthus nepalensis, with trees and shrubs like Euphorbia royleana, Erythrina arborescens, Butea minor, Desmodium species | 800-2800m,
subtropical,
semi-humid,
hill to
montane,
E/C/W | Steep south-
facing slopes
exposed to up-
valley winds | Tussock
grassland,
frequently fired | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |-----|--------------------------------------|--|---|--|---| | 12 | Thickets and pastures | Exotic weeds (Eupatorium, Ageratum, Lantana), tropical grasses (Cynodon dactylon, Chrysopogon aciculatus, Setaria pallidefusca), ferns (Pteridium aquilinum, Pteris quadriaurita), tall forbs (Artemisia species, Anaphalis species), Callicarpa macrophylla, Woodfordia fruticosa, Vitex nebundo, Rubus ellipticus, Berberis aristata | Below 1000-
2500m,
subtropical,
semi-humid
to euhumid,
hill to
submontane,
E/C/W | Southern
exposure | Communal grazing land around settlements, result of overgrazing and exploitation | | The | cloud forest bel | t | | | | | 13 | Quercus
lamellosa
forest | Quercus lamellosa, Q. glauca,
Q. oxydon, Q. acutissima,
Lithocarpus elegans,
Castanopsis tribuloides, Betula
alnoides, Acer campbellii,
Magnolia doltsopa | 1600-2800m,
temperate,
euhumid to
subhumid,
montane, E/C | Mostly on
shady humid
slopes | Evergreen,
broadleaved,
multi-storeyed,
species rich,
epiphyte-
burdened,
climax, up to
60m tall | | 14 | Lithocarpus
pachyphylla
forest | Lithocarpus pachyphylla, Quercus lamellosa, Q. lineata, Magnolia campbellii, M. doltsopa, Betula alnoides, Schefflera rhododendrifolia, Acer caesium, Daphniphyllum himalayense, Litsea elongata, Neolitsea foliosa, Symplocos lucida, Ilex dipyrena, Rhododendron falconeri, R. grande | 2400-2900m,
temperate,
euhumid,
montane, E | Only in the
south-facing
sites on the
Singalila
Danda (Sikkim
border) | Evergreen,
broadleaved,
epiphyte-
burdened,
climax, 25-30m
tall | | 15 | Quercus
floribunda
forest | Quercus floribunda (Syn.: Q. dilatata), Acer species, Juglans regia, Aesculus indica, Machilus duthiei, Symplocos species, Neolitsea pallens, Lindera pulcherrima, Dodecadenia grandiflora, Rhododendron arboreum | 1900-2400m (west), 2100-2900m (towards east), subtropical to temperate, subhumid to semi-humid, submontane to montane | Damp, shady
slopes | With cold-
deciduous
trees,
broadleaved,
multi-storeyed,
climax, 30m
tall | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |----|-------------------------------------|---|---|---|---| | 16 | Quercus
semecarpifolia
forest | Quercus
semecarpifolia, Tsuga
Dumosa, Magnolia campbellii,
Acer species, Taxus wallichiana,
Rhododendron arboreum,
Lyonia ovalifolia, Lauraceae,
Aquifoliaceae, Celastraceae,
Symplocaceae, Ericaceae,
Araliaceae, Rosaceae | 2200-3000m
(general),
2700-3500m
(drier sites),
temperate,
subhumid to
semi-humid,
montane,
E/C/W | Moderate rain
shadow, mostly
on southern
exposure | Evergreen,
broadleaved,
multi-storeyed,
epiphyte-
burdened,
species rich,
climax, 40m
tall | | 17 | Tsuga dumosa
forest | Tsuga dumosa, Quercus
semecarpifolia, Acer species,
Magnolia campbellii, Sorbus
cuspidate, Taxus baccata,
Rhododendron barbatum, R.
falconeri | 2100-3000m,
temperate,
euhumid to
subhumid,
montane | Semi-humid
southern
exposure,
and northern
exposure in the
inner valleys,
on well-drained
ridges | Evergreen, mixed broadleaved with Tsuga, epiphyte- burdened, climax | | 18 | Rhododendron
arboreum
forest | Rhododendron arboreum, with sparse shrubs like Viburnum erubescens, Piptanthus nepalensis, Berberis aristata, Cotoneaster acuminatus, Daphne bholua, Sarcococca hookeriana | 1200-4000m,
temperate,
sub-humid
to semi-arid,
montane,
E/C/W | Mostly on southern exposure | Evergreen,
broadleaved,
single-
storeyed,
monospecific,
8-15m tall
single-
stemmed,
gnarled trees | | 19 | Rhododendron
hodgsonii
forest | Rhododendron hodgsonii, R.
grande, R. falconeri | 3000-
4000m, cool,
euhumid,
upper
montane | All exposures,
permanently
wet, level or
gently sloping
ground | Evergreen,
broadleaved,
low to dwarf,
gnarled, single-
storeyed,
climax | | 20 | Abies
spectabilis
forest | Abies spectabilis (Syn.: A. webbiana), Betula utilis, Rhododendron campanunatum, R. barbaratum, R. arboreum, Lyonia villosa, Sorbus cuspidata, S. foliolosa, S. microphylla, Juniperus recurve, Prunus rufa, Acer species, Ribes species, Hydrangea heteromalla | 3000-4200m,
cool, euhumid
to subhumid,
upper
montane,
E/C/W | All exposures,
but shady
slopes in rain
shadow | Evergreen,
conifer,
abundant
epiphytes,
climax, 40m
tall | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |----|---|---|--|---|--| | 21 | Abies densa
forest | Abies densa, Betula utilis, Pyrus
pashia, Prunus rufa, Sorbus
species, bamboo (Yushania
microphylla) | 3000-4350m
(general),
down to
2900m (inner
valleys), cool,
euhumid to
subhumid,
upper
montane, E | Moderate rain
shadow, | Evergreen,
conifer, climax,
50m tall | | 22 | Juniperus
recurva forest | Juniperus recurva (Syn.: J. wallichiana, J. squamata) (almost pure at canopy), Sorbus foliolosa, S. ursina, Betula utilis, Prunus rufa, Rhododendron campalunatum | 3000-4300m,
cool, euhumid
to subhumid,
upper
montane
and treeline
ecotone | South-facing
slopes, mostly
on shallow
soils, rock
cliffs | Evergreen,
conifer, climax
on sunny
slopes, 30m
tall | | 23 | Juniperus
recurva
thickets | Shrubby form of Juniperus recurva (generally pure), but at margins: Berberis concinna, Rhododendron lepidotum, Rosa sericea | 3600-
4200m, cold,
subhumid to
semi-humid,
treeline
ecotone | Southerly cliffs
and shallow
steep slopes | Evergreen,
conifer, climax,
2m tall | | 24 | Rhododendron
thickets | Rhododendron wallichii, R.
fulgens, R. campylocarpum,
Sorbus microphylla | 3800-
4400m, cold,
euhumid to
semi-humid,
treeline
ecotone,
E/C/W | North-facing
slopes | Gnarled,
climax, 3-4m
tall to dwarf
shrubs | | 25 | Bamboo
thickets | Yushania, Arundinaria,
Fargesia, Drepanostachyum,
Himalayacalamus species | 2800-3600m,
temperate to
cool, euhumid
to subhumid,
montane | On disturbed site by landslide, logging and fire, | In Nepal, only
in Thakkhola
above Chim | | 26 | Tall forb
communities
of cattle
resting places | Rumex nepalensis, Microula
species, Cynoglossum
glochidiatum, Urtica dioica,
Scopolia straminifolia, Arctium
lappa, Sambucus adnata | 2000-
4300m, cool,
euhumid to
semi-humid,
montane | On manure heaps and eutrophic, seasonal grazing settlements | 1-3m tall | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |-----|---|--|---|---|---| | The | alpine belt | | | | | | 27 | Rhododendron
dwarf thickets | Rhododendron anthopogen, R.
nivale, R. setosum | 3450-3800
(W), 3800-
5100 (E/C),
cold, semi-
humid to
subhumid | Shady slopes | Rich in
bryophytes,
climax, up to
50cm tall | | 28 | Kobresia
nepalensis
mats | Kobresia nepalensis, Bistorta
macrophylla, Saussurea species,
Primula species, Pedicularis
species, Potentilla microphylla,
Festuca species, Poa species,
Elymus species | 4000-5000m
(somewhere
down to
3600m), cold,
semi-humid to
semi-arid | Southern
exposure | Climax/
anthropogenic
plagioclimax,
up to 20cm
tall, with 50-
90% cover | | 29 | Crustose
lichen covers
of rock
walls | Sporastatia testudinea,
Aspicilia species, Rhizocarpon
geographicum | 6000m
(Khumbu
Himal),
7450m (Mt.
Makalu) | Stable rock
surface with
sufficient fog
precipitation | Climax,
blackish cover
of boulders
and rock walls | | The | vegetation types | s of the inner valleys | | | | | The | subtropical belt | | | | | | 30 | Olea
ferruginea
woodlands | Olea ferrunginea, Pistacia
chinensis, Punica granatum,
Acer pentapomicum, Celtis
australis, Cotinus coggygria,
Ficus palmata | 1000-2000m,
subtropical,
semi-humid,
submontane,
W | Dry river
gorges – valley
bottoms, lower
slopes, shallow
soils | 2-8m tall | | The | temperate belt | | | | | | 31 | Cedrus
deodara forest | Cedrus deodara, with Pinus gerardiana (west), P. roxburghii, Quercus baloot (lower range), Pinus wallichiana, Quercus floribunda, Aesculus indica, Picea smithiana, Abies pindrow, Taxus wallichiana (upper range), Rhododendron arboreum, Lyonia ovalifolia, Ilex dipyrena (humid border) | 1800-3000m,
temperate,
semi-humid
to semi-arid,
submontane
to montane, W | Dry rocky
slopes in rain-
shadowed
inner valleys,
Bheri valley
between
Tibrikot and
Tarakot, Sinja
and Tila khola,
Jumla | Evergreen,
conifer, 50-60m
tall, edaphic
climax of dry,
southern scree
slopes | | 32 | Aesculus-Acer
forest | Aesculus, Juglans, Acer
caesium, Acer cappadocicum,
Ulmus wallichiana, Morus
serrata, Carpinus viminea, C.
faginea, Populus ciliate, Taxus
wallichiana | 1800-3100,
temperate,
subhumid,
montane, W | Shady slopes
and along
streams, Jumla
area | Deciduous,
broadleaved,
multi-storeyed,
edaphic
mesoclimatic
climax, 30m
tall | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |----|--------------------------------|---|--|---|---| | 33 | Pinus
wallichiana
forest | Pinus wallichiana (Syn.: P. excelsa, P. griffithii), with Abies pindrow, Picea smithiana (lower range), A. spectabilis, Betula utilis (upper range) | 1600-3600m,
subhumid
to semi-arid,
montane | Mostly on
sunny slopes,
on abandoned
fields, e.g.
around Rara
lake | Evergreen,
conifer, single-
storeyed,
monospecific,
light, up to
50m tall | | 34 | Picea
smithiana
forest | Picea smithiana (Syn.: P. morinda), Abies pindrow, Aesculus species, Juglans regia, Quercus semecarpifolia, Pinus wallichiana, Juniperus indica, Populus ciliate, Acer species, Sorbus cuspidate, Taxus wallichiana | 2100-3600m,
temperate to
cool, subarid
to semi-arid,
montane, W | Shady slopes,
Trisuli valley as
eastern limit | Evergreen,
conifer, up to
60m tall | | 35 | Abies pindrow
forest | Abies pindrow, Pinus
wallichiana, Taxus wallichiana,
Aesculus indica, Juglans regia,
Populus
ciliata, Acer species,
Betula utilis, Prunus cornuta,
Sorbus species | 2000-3000m,
temperate
to cool,
subhumid to
semi-humid,
montane, W | Steep shady
slopes in
Humla-Jumla
area and Dolpa | Evergreen,
conifer, climax,
up to 45m tall | | 36 | Betula utilis
forest | Betula utilis, Sorbus microphylla,
Prunus rufa; shrubs: Salix
karelinii, Rhododendron
campanulatum, R. fulgens | 3600-4200m,
cool-
temperate,
semi-humid
to semi-
arid, upper
montane | North aspect
(moderate rain-
shadow) and
south (south of
the Himalayas) | Cold
deciduous,
broadleaved,
low to dwarf,
gnarled, single-
storeyed,
climax, 8-12m
tall | | 37 | Cupressus
torulosa forest | Cupressus torulosa, with understory of Juniperus indica, Pinus wallichiana, Picea smithiana | 2500-3200m,
temperate,
semi-arid
to subarid,
montane | All exposures
but mostly
on south-
facing rocky
cliffs (Dolpa,
Suligad valley,
Phoksundo) | Evergreen,
conifer, climax
near drought
line, edaphic
climax in
humid part, up
to 50m tall, | | 38 | Juniperus
indica forest | Juniperus indica (Syn.: J. wallichiana, Sabina wallichiana); in humid sites: Sorbus species, Picea smithiana, Pinus wallichiana, Rhododendron arboreum; in drought line ecotone: Cupressus torulosa | 3000-4500m,
temperate,
semi-arid to
subarid, upper
montane,
E/C/W | Mostly on
sunny slopes
near drought
line, in inner
valleys (Dolpa,
Thakkhola,
Manangbhot) | Evergreen,
conifer, gnarled
and stunted
in drought
line and upper
treeline,
climax, up to
15m tall | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |-----|--|---|--|--|---| | 39 | <i>Larix</i> forest | Larix himalaica (Shiar khola,
Langtang, upper Trisuli),
Larix griffithiana (Rolwaling
eastward) | 3000m to
treeline
ecotone, cool,
euhumid to
subhumid,
E/C | Moraines and
landslides in
inner valleys
(upper Shiar
khola, Manaslu
and Ghunsa,
Kanchenjunga) | Pioneer, up to
20m tall | | 40 | Hippophae
riverine
woodlands | Hippophae salicifolia | 2000-3400m,
temperate
to cool,
subarid to
semi-humid,
montane | Alluvial gravel
flats in rain
shadow of
inner valleys
(e.g. Thakkhola
near Larjung) | Pioneer, 8-12m
tall in maturity | | 41 | Caragana
sukiensis
thickets | Caragana sukiensis (Syn.:
C. nepalensis, C. hoplites);
if less dense: Leptodermis
kumaonensis, Viburnum
cotinifolium, Rhododendron
lepidotum, R. arboreum, Lyonia
ovalifolia, Juniperus recurva | 2400-3700m,
temperate
to cool,
subhumid to
semi-humid,
montane, C/W | Southern exposures of the inner valley (largest stand in upper Langtang valley) | Impenetrable
thorny thickets,
1.5-3m tall | | 42 | Rhododendron
lepidotum
shrublands | Rhododendron lepidotum,
Cotoneaster microphylla, Aster
albescens, Potentilla fruticosa,
Berberis concinna | 2500-4850m,
temperate,
subhumid to
semi-humid,
montane,
E/C/W | South-facing
slopes, in
south of the
Himalayas and
inner valleys | Even-sized
shrubs, 1m
(generally), but
0.2 to 3m tall | | 43 | Rosa-Berberis-
Cotoneaster
shrublands | Rosa species, Berberis species,
Prinsepia utilis, Daphne
bholua, Biburnum species,
Elsholtzia fruticose, Cotoneaster
microphyllus, Danthonea
cumminsii, Deyeuxia pulchella | 2000 to
3500-4050m,
temperate
to cool,
subhumid
to semi-arid,
montane | Sunny slopes
in the south
and east
slopes of the
Himalayas | Shrubland pasture, anthropogenic replacement, 0.5-1.5m (generally) but up to 3m | | The | alpine belt | | | | | | 44 | Juniperus
squamata
dwarf
shrublands | Juniperus squamata, with
Berberis concinna, B. mucrifolia,
Potentilla fruticose, Lonicera
asperifolia, Ephedra gerardiana,
Rosa sericea | 3550-4000m
(northwest)
and 4000-
5200m (inner
valleys), cold,
semi-humid
to semi-arid,
alpine | South-facing,
rocky slopes
with shallow
soils | Climax, up to
1.5m tall | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |-----|---|--|--|---|--| | 45 | Kobresia
pygmaea
dwarf mats | Kobresia pygmaea, Bistorta
mactrophylla, Potentilla
microphylla | 4000-5960m,
cold, semi-
humid to
semi-arid,
high alpine | Upper
catchment of
inner valleys
and rolling hills
between 4700-
5100m | Mats,
anthropogenic
plagioclimax
in the grazing
area | | 46 | High alpine
cushion
communities
and highest
plant records | Caryophyllaceae, Rosaceae, crustose and fruticose lichens, dwarf shrubs (Potentilla fruticosa, Rhododendron nivale); medicinal plants: Delphinium brunonianum, Saussurea gossypiphora, Ophiocordyceps sinensis | 5000-5960m,
cold, semi-
humid to
subarid,
subnival | Gentle slopes
with water
saturated
substrates | | | 47 | Hippophae
tibetana
riverine
dwarf thickets | Hippophae tibetana, with tall forms on disturbed sites (Rumex species, Rheum species, Artemisia wallichiana, A. roxburghiana) | 3500-
5000m, cold,
subhumid
to semi-
arid, upper
montane to
lower alpine | Gravel flats of
glacial basins
throughout
inner valleys | Dense thickets,
pioneer, 15-
50cm tall | | 48 | Pioneer plant
successions
in
glacial
forelands | Algae, mosses (Bryum species),
lichens (Gyalidea scutellaris,
Stereocaulon species), dwarf
shrubs (Myricaria species,
Oxyria digyna) | 5000-
6000m, cold,
subhumid to
semi-humid,
alpine | Recently
exposed fluvio-
glacial sands,
gravels and
boulders | Formed after ice melting | | The | vegetation types | s of the Arid Zone | | | | | 49 | Caragana
gerardiana
open dwarf
shrublands | Caragana gerardiana,
Cotoneaster tibeticus,
Krascheninnikovia ceratoides,
Lonicera spinosa, L. hypoleuca,
Artemisia gmelinii, Rosa sericea,
Berberis species | 2600-3900m,
temperate,
semi-arid
to subarid,
montane | Gravel terraces
in rain shadow
areas (Karnali,
Barbung Khola,
Thakkhola,
Arun) | Thorny
cushions, 0.5 -
1.2m tall | | 50 | Caragana
versicolor
open dwarf
shrublands | Caragana versicolor,
Krascheninnikovia ceratoides,
Lonicera spinosa, Berberis
species, Potentilla fruticose,
Artemisia gmelinii | 4400-5000m,
cold, semi-
arid to
subarid,
subalpine to
alpine | Sandy and silt
rich soils on
gently rolling
slopes in rain-
shadow, upper
Kaligandaki
catchment | Thorny
cushions,
climax, 0.3 –
0.8m tall | | | | | | | | | SN | Vegetation
type | Species association | Altitude,
climate,
humidity,
biogeography | Topography,
micro-climate,
aspect | Remarks | |----|---------------------------------------|--|---|--|---| | 51 | Alpine steppe | Carex montis, C. moorcroftii,
Saussurea leontodontoides,
Arenaria bryophylla,
Androsace tapete, Incarvillea
younghusbandii, Potentilla
bifurca, Dracocephalum
heterophyllum, Heteropappus
semiprostratus, Stipa purpurea,
Callianthemum pimpinelloides,
Oxytropis microphylla | Above 4600m,
cold, subarid,
alpine | Shallow,
south-facing,
strongly wind-
exposed sites
(watershed
of Kore-La
between upper
Mustangbhot
and Yarlung
Zhangbo valley
of South Tibet) | Short grass
steppe with
feature
grasses,
sedges and
cushion plants,
negligible area
in Nepal | | 52 | Salt meadows | Carex orbicularis, Blysmus compressus, Eleocharis species, Juncus thomsonii, Trichophorum pumilum, Kobresia schoenoides, Deschampsia caespitosa, Primula tibetica, Pedicularis longiflora, Glaux maritima, Triglochin maritima | 2500-4300m,
temperate,
semi-arid
to euarid,
montane | Around springs
or along
streams with
stagnant water,
in
arid valley
bottoms of the
inner valley
(Manangbhot,
Thakkhola, and
Limi of Humla) | Dense, short
grassland with
herbs of salty
water surplus,
10-15cm tall,
small areas
between 20
and 2000m²,
azonal climax
of arid Central
Asia | | 53 | Plant
communities
of wastelands | Tall forbs (Hyoscyamus niger, Vincetoxicum hirundinaria, Mirabilis himalaica, Urtica dioica, Arctium lappa), rosettes of ruderal plants (Plantago depressa, Erodium stephanianum) | 2500-4200m,
temperate,
semi-arid
to euarid,
montane | Wastelands around settlements with trampling and eutrophication from livestock | Ruderal
vegetation | Note: E/C/W = East/Centre/West # 3. International Vegetation classification (IVC) The International Vegetation Classification (IVC), which is based on the ecological vegetation (EcoVeg) classification approach, applies an eight-level hierarchy to all terrestrial vegetation including natural and cultural vegetation. It provides a broad to fine (local) scale vegetation classification based on the vegetation's physiognomy, biogeographic and floristic characteristics (Faber-Langendoen et al., 2016). The hierarchy includes three upper (formation) levels, three middle (physiognomic-biogeographic-floristic) levels and two lower (floristic) levels for natural vegetation. Each class is clearly defined by providing specific criteria and description to facilitate a consistent framework application (Faber-Langendoen et al. 2014) (Table 14). Table 14: Eight hierarchy levels of the International Vegetation Classification (IVC) (Source: Faber-Langendoen et al. 2014) | Natural | D. C. Miller | Example names | | | |------------------------|--|--|--|--| | hierarchy | Definition | Scientific | Colloquial | | | | Upper levels | | | | | L1: Formation class | A broad combination of dominant general growth forms adapted to basic moisture, temperature, and/or substrate or aquatic conditions. | Mesomorphic Shrub
and Herb Vegetation | Shrub and Herb
Vegetation | | | L2: Formation subclass | A combination of general dominant and diagnostic growth forms that reflect global mega- or macroclimatic factors driven primarily by latitude and continental position or that reflect aquatic conditions overriding substrate | Temperate and
Boreal Shrub and
Herb Vegetation | Temperate and
Boreal Grassland
and Shrubland | | | L3: Formation | A combination of dominant and diagnostic growth forms that reflect global macroclimatic conditions as modified by altitude, seasonality of precipitation, substrates and hydrologic condition | Temperate Shrub and
Herb Vegetation | Temperate
Grassland and
Shrubland | | | Natural | Definition | Example names | | | | |-----------------|--|---|---|--|--| | hierarchy | | Scientific | Colloquial | | | | | Middle levels | | | | | | L4: Division | A combination of dominant and diagnostic growth forms and a broad set of diagnostic plant species that reflect biogeographic differences in composition and continental differences in mesoclimate, geology, substrates, hydrology, and disturbances | Andropogon-Stipa-
Bouteloua Grassland
and Shrubland | Great Plains
Grassland and
Shrubland | | | | L5: Macrogroup | A moderate set of diagnostic plant species and diagnostic growth forms that reflect biogeographic differences in composition and subcontinental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes | Andropogon gerardii-
Schizachyrium
scoparium-
Sorghastrum nutans
Grassland and
Shrubland | Great Plains
Tallgrass Prairie | | | | L6: Group | A relatively narrow set of diagnostic plant species (including dominants and codominants), broadly similar composition, and diagnostic growth forms that reflect regional mesoclimate, geology, substrates, hydrology, and disturbance regimes | Andropogon
gerardii-Heterostipa
spartea-Muhlebergia
richardsonis
Grassland | Northern Great
Plains Tallgrass
Prairie | | | | | Lower levels | | | | | | L7: Alliance | A Characteristic range of species composition, habitat condition, physiognomy, and diagnostic species, typically at least one of which is found in the uppermost or dominant stratum of the vegetation. Alliances reflect regional to subregional climate, substrates, hydrology, moisture/nutrient factors, and disturbance regimes | Andropogon
gerardii-Sporobolus
heterolepsis
Grassland | Northern Mesic
Big Tallgrass
Prairie | | | | L8: Association | A characteristic range of species composition, diagnostic species occurrences, habitat conditions, and physiognomy. Associations reflect topoedaphic climate, substrates, hydrology, and disturbance regimes | Andropogon
gerardii-Heterostipa
spartea-Sporobolus
heterolepsis
Grassland | Northern Mesic
Big Bluestem
Prairie | | | For the upper (formation) levels, the EcoVeg approach has identified six classes, 13 subclasses and 37 formations for natural global vegetation (Faber-Langendoen et al. 2016) (Table 15). Table 15: Formation level units, Level 1 to Level 3 based on EcoVeg's global vegetation classification | Level 1 Formation Class | Level 2 Formation
Subclass | Level 3 - Formation | | |---|--|---|--| | | 1.A Tropical Forest and
Woodland | 1.A.1. Tropical Dry Forest & Woodland | | | | | 1.A.2. Tropical Lowland Humid Forest | | | | | 1.A.3. Tropical Montane Humid Forest | | | 1. Forest and Woodland | WOOdidiid | 1.A.4. Tropical Flooded & Swamp forest* | | | (Mesomorphic Tree | | 1.A.5. Mangrove* | | | Vegetation) | | 1.B.1. Warm Temperate Forest & Woodland | | | | 1.B. Temperate & Boreal | 1.B.2. Cool Temperate Forest & Woodland | | | | Forest & Woodland | 1.B.3. Temperate Flooded & Swamp Forest* | | | | | 1.B.4. Boreal Forest & Woodland | | | | | 1.B.5. Boreal Flooded & Swamp Forest* | | | | 2.A. Tropical Grassland, | 2.A.1. Tropical Lowland Grassland, Savanna & Shrubland | | | | Savanna & Shrubland | 2.A.2. Tropical Montane Grassland & Shrubland | | | | | 2.A.3. Tropical Scrub & Herb Coastal Vegetation | | | | | 2.B.1. Mediterranean Scrub & Grassland | | | | 2.B. Temperate & Boreal
Grassland & Shrubland | 2.B.2. Temperate Grassland & Shrubland | | | 2. Shrub & Herb Vegetation | | 2.B.3. Boreal Grassland & Shrubland | | | [Mesomorphic Shrub & Herb Vegetation] | | 2.B.4. Temperate to Polar Scrub & Herb Coastal Vegetation | | | | | 2.C.1. Tropical Bog & Fen * | | | | 2.C. Shrub & Herb
Wetland | 2.C.2. Temperate to Polar Bog & Fen* | | | | | 2.C.3. Tropical Freshwater Marsh, Wet Meadow & Shrubland* | | | | | 2.C.4. Temperate to Polar Freshwater Marsh, Wet Meadow & Shrubland* | | | | | 2.C.5. Salt Marsh* | | | | 3.A. Warm Desert & | 3.A.1. Tropical Thorn Woodland | | | 3. Desert & Semi-Desert [Xeromorphic Woodland, | Semi-Desert Woodland,
Scrub & Grassland | 3.A.2. Warm Desert & Semi-Desert Scrub & Grassland | | | Scrub & Herb Vegetation] | 3.B. Cool Semi-Desert
Scrub & Grassland | 3.B.1. Cool Semi-Desert Scrub & Grassland | | | 4. Polar & High Montane
Scrub, Grassland & Barrens
[Cryomorphic Grassland | 4.A. Tropical High
Montane Scrub &
Grassland | 4.A.1. Tropical High Montane Scrub & Grassland | | | & Barrens] [Cryomorphic
Scrub, Herb & Cryptogam | 4.B. Temperate to | 4.B.1. Temperate & Boreal Alpine Dwarf-shrub & Grassland | | | Vegetation] | Polar Alpine & Tundra
Vegetation | 4.B.2. Polar Tundra & Barrens | | | | 5.A. Saltwater Aquatic
Vegetation | 5.A.1. Floating & Suspended Macroalgae
Saltwater Vegetation* | |--|--|--| | 5. Aquatic Vegetation | | 5.A.2. Benthic Macroalgae Saltwater Vegetation* | | [Hydromorphic Vegetation] | | 5.A.3. Benthic Vascular Saltwater Vegetation* | | | | 5.A.4. Benthic Lichen Saltwater Vegetation* | | | 5.B. Freshwater Aquatic
Vegetation | 5.B.1. Tropical Freshwater Aquatic Vegetation* | | | | 5.B.2. Temperate to Polar Freshwater Aquatic Vegetation* | | 6. Open Rock Vegetation
[Cryptogam - Open | 6.A. Tropical Open Rock
Vegetation | 6.A.1. Tropical Cliff, Scree & Other Rock
Vegetation | | Mesomorphic Vegetation] | 6.B. Temperate and
Boreal Open Rock
Vegetation | 6.B.1. Temperate and Boreal Cliff, Scree and Other Rock Vegetation | NB: * represents wetland formation # 4. Implications of the past vegetation classification and IVC for EFTMP The systematic classification of Nepal's vegetation started with J. D. A. Stainton's ecological survey between 1962 and 1969 (Stainton 1972). Since then, several attempts have been made to classify Nepal's vegetation. Dobremez and his colleagues carried out a comprehensive vegetation survey between 1969 and 1974 to classify and map Nepal's vegetation (Dobremez 1976). Jackson (1994), BPP (1996) and TISC (2002) reclassified the country's vegetation on their own way but based largely on the previous
works by Stainton (1972) and Dobremez (1976). Latest in the 2010s, DFRS (2015) and Miehe et al. (2015) also reclassified Nepal's vegetation differently than the previous ones. Inconsistencies among the different assessments can be observed in terms of coverage of vegetation formations, number of vegetation types, methods used, nomenclature of vegetation types etc. These are briefly discussed below, with their implications for the EFTMP. #### (A) Coverage of vegetation formations DFRS (2015) covers only forest and woodland formation in its classification. Stainton (1972) covers part of mesomorphic shrub and herb vegetation (excludes grassland and savanna) in addition to the forest and woodland formation. Dobremez (1976), BPP (1996) and Miehe et al. (2015) are the most comprehensive assessments in terms of coverage of vegetation formations. They cover all terrestrial vegetation formations in Nepal, including forest and woodland, mesomorphic shrub and herb vegetation, desert and semi-desert vegetation, and open rock vegetation formation as defined by IVC (Faber-Langendoen et al. 2014). Jackson (1994) and TISC (2002) also cover all major vegetation formations into a small number of vegetation types. However, none of the classifications strictly adhere to any standard vegetation classification system. #### (B) Number of vegetation types BPP (1996) proposes the highest number of vegetation types (112), which were derived from the 198 ecology types mapped by Dobremez and his colleagues between 1969 and 1985. Dobremez (1976), Miehe et al. (2015), TISC (2002), Jackson (1994), and DFRS (2015) report 77, 53, 36, 24 and 15 vegetation/forest types, respectively. All the assessments have considered species composition/association as the major basis of vegetation classification; the differences in the number of vegetation types are mainly attributed to the scale - fine or coarse - of differentiation between types. #### (C) Data and methods Among the different vegetation assessments, some applied more targeted efforts for the classification of Nepal's vegetation (e.g., Stainton 1972, Dobremez 1976, BPP 1996, and TISC 2002), whereas others did so as part of broader objectives of their works (e.g., Jackson 1994, FRTC 2015, Miehe et al. 2015). Similarly, while some used an extensive field survey for data collection (Stainton 1972, Dobremez 1976, Miehe et al. 2015), others were based largely on secondary data and information (Jackson 1994, BPP 1996, TISC 2002, DFRS 2015). While Stainton (1972), Jackson (1994), and Miehe et al. (2015) identified and described Nepal's vegetation types and their distribution without delineating them spatially, Dobremez and his colleagues (1970-1985) manually produced iso-potential vegetation maps for seven regions showing the spatial distribution of various vegetation types in the same environmental and climatic regimes. TISC (2002) also produced iso-potential vegetation map based on the work by Dobremez and his colleagues. DFRS (2015) is the only assessment that produced a vegetation (forest) type map based on existing vegetation. However, its accuracy and comprehensiveness are limited because the data collection was not intended for vegetation classification and mapping. EFTMP aims to reclassify and map Nepal's vegetation based on the actual vegetation occurrence so that it can be monitored periodically. It intends to delineate vegetation types using a geospatial approach, i.e. analysis of satellite images using signatures from the field data. Therefore, it plans to collect plot data in such a way that sufficient training data set for each vegetation type are available for satellite image classification. #### (D) Field survey methodology Stainton (1972) and Dobremez (1976) carried out extensive field surveys across the country along the randomly selected horizontal and vertical transects to capture all vegetation types and their environments. They applied an ecological observation approach to identify and define each vegetation unit in its entirety and the accompanied environment. While Stainton (1972) carried out field observations by himself over the period of eight years (effectively two and a half years), Dobremez (1976) used a multidisciplinary team, comprising ecologists and botanists, for field observations over five years (effectively two years). We note the following lessons learnt from the review of Nepal's forest or vegetation type classifications regarding field survey: - a) In Nepal, vegetation types and structures vary significantly along the altitudinal gradient (North-South), while the east-west direction presents fewer variations. Therefore, ecological observation/field data collection will be aligned along the North-South transects distributed from east to west to identify and describe all vegetation types. - b) Unlike Stainton (1972) and Dobremez (1976), who spent a long period of time to complete the field survey, EFTMP has planned to engage five field teams (each comprising a forester, a botanist and a local resource person) to complete the field survey in one and a quarter years. Therefore, systematic transects/sample points have been allocated to ensure consistency and accuracy of data. Also, a Standard Operating Procedure (SOP) has been prepared to maintain consistency in methods of data collection by all field crews. - c) The past assessments show certain biodiversity hotspots and pocket areas of some vegetation types that the systematic transects may not cover. Therefore, some purposive transects or observation plots are needed to survey these isolated areas. The Arun, Tamur, Kaligandaki, Trisuli and Karnali valleys are the vital vegetation hotspots for classifying forest/vegetation types of Nepal. In addition, Table 16 lists some vegetation types that are confined to specific areas. Table 16: Some vegetation types with specific areas of their distribution | SN | Vegetation type | Specific locations | | | |----|---|--|--|--| | 1 | Terminalia forest | East Rapti valley, Bheri valley (Stainton 1972) | | | | 2 | Lithocarpus pachyphylla forest | South-facing slope of Singalila Danda (near Sikkim border) (Stainton 1972, Miehe et al. 2015) | | | | 3 | Picea smitihiana forest Upper Budhigandaki and Trisuli valleys, west of Rara lake and Chankheli ridge (Mugu) (Stainton 1972, TISC 2002, Miehe et al. 2015) | | | | | 4 | Larix griffithiana forest | Simbua khola (near Sikkim border), Ghunsa, Kanchenjunga (Stainton 1972, Miehe et al. 2015) | | | | 5 | Larix himalaica forest | Upper Shiar khola (Budhigandaki valley), Langtang valley (near
Rasuwa Garhi) (Stainton 1972, Miehe et al. 2015) | | | | 6 | Alnus nitida forest | Mugu Karnali (Stainton 1972) | | | | 7 | Juniperus indica forest | Dhorpatan, Thakkhola, Dolpa (Stainton 1972, TISC 2002, Miehe et al. 2015) | | | | 8 | Rhododendron forest | Milke-Jaljale ridge (TISC 2002) | | | | 9 | Cedrus deodara forest | Bheri valley between Tibrikot and Tarakot, Sinja and Tila valleys (Jumla) (TISC 2002, Miehe et al. 2015) | | | | 10 | Olea forest | Upper Bheri valley (TISC 2002) | | | | 11 | Aesculus-Acer forest | Jumla area (Miehe et al. 2015) | | | | 12 | Cupressus torulosa forest | Suligad valley, Dolpa (Miehe et al. 2015) | | | | 13 | Hippophae salicifolia forest | Thakkhola near Larjung (Miehe et al. 2015) | | | | 14 | Caragana sukiensis
shrublands | Upper Langtang valley (Miehe et al. 2015) | | | # 5. Classification of Nepal's Vegetation ## 5.1 Vegetation classification approach EFTMP aims to reclassify and map Nepal's vegetation types covering all types of vegetation formations applying the IVC's EcoVeg approach (refer to Section 3) for ensuring consistency with the global vegetation classification. Applying the local knowledge of physiognomy, biogeographic and floristic characteristics of Nepal's vegetation, the vegetation formation levels applicable to Nepal's natural vegetation are identified from the global list in Table 17. Table 17: Formation levels 1 to 3 applicable to Nepal based on EcoVeg's vegetation classification | Level 1 Formation Class | Level 2 Formation
Subclass | Level 3 - Formation | |----------------------------------|--|---| | | 1.A Tropical Forest and | 1.A.1. Tropical Dry Forest & Woodland | | 1. Forest and Woodland | Woodland | 1.A.2. Tropical Lowland Humid Forest | | (Mesomorphic Tree
Vegetation) | 1.B. Temperate & Boreal
Forest & Woodland | 1.B.1. Warm Temperate Forest & Woodland | | | | 1.B.2. Cool Temperate Forest & Woodland | | | 2.A. Tropical Grassland,
Savanna & Shrubland | 2.A.1. Tropical Lowland Grassland, Savanna & Shrubland | | | 2.B. Temperate & Boreal
Grassland & Shrubland | 2.B.2. Temperate Grassland & Shrubland | | 2. Shrub & Herb Vegetation | | 2.B.4. Temperate to Polar Scrub & Herb
Coastal Vegetation | | [Mesomorphic Shrub & | | 2.C.1. Tropical Bog & Fen * | | Herb Vegetation] | | 2.C.2. Temperate to Polar Bog & Fen* | | | Meadow & Shrubland* | 2.C.3. Tropical Freshwater Marsh, Wet Meadow & Shrubland* | | | | 2.C.4. Temperate to Polar Freshwater Marsh, Wet Meadow & Shrubland* | | Level 1 Formation Class | Level 2 Formation Subclass | Level 3 - Formation | | |---|---|--|--| | 2. December 9. Coursi Decemb | 3.A. Warm Desert & Semi-
Desert Woodland, Scrub &
Grassland | 3.A.2. Warm Desert & Semi-Desert Scrub & Grassland | | |
3. Desert & Semi-Desert [Xeromorphic Woodland, Scrub & Herb Vegetation] | 3.B. Cool Semi-Desert
Scrub & Grassland | 3.B.1. Cool Semi-Desert Scrub & Grassland | | | | 4.B.1. Ten | 4.B.1. Temperate & Boreal Alpine Dwarf-shrub & Grassland | | | 4. Polar & High Montane
Scrub, Grassland & Barrens
[Cryomorphic Grassland
& Barrens [Cryomorphic
Scrub, Herb & Cryptogam
Vegetation] | 4.B. Temperate to Polar
Alpine & Tundra Vegetation | 4.B.2. Polar Tundra & Barrens | | | 5. Aquatic Vegetation | 5.B. Freshwater Aquatic
Vegetation | 5.B.1. Tropical Freshwater Aquatic Vegetation* | | | [Hydromorphic Vegetation] | | 5.B.2. Temperate to Polar Freshwater Aquatic Vegetation* | | | 6. Open Rock Vegetation
[Cryptogam - Open
Mesomorphic Vegetation] | 6.B. Temperate and Boreal
Open Rock Vegetation | 6.B.1. Temperate and Boreal Cliff, Scree and Other Rock Vegetation | | For the classification of vegetation types, EFTMP focuses on 'association' (L8 level of the hierarchy of the EcoVeg approach to vegetation classification) by examining the dominant or diagnostic species, physiognomy and biogeoclimatic condition. The vegetation association underpins the fine-scale vegetation classification encompassing the natural and cultural vegetations and enables retrospectively developing the remaining hierarchy levels including 'division' (L4), 'macrogroup' (L5), 'group' (L6) and 'alliance' (L7). # 5.2 Nomenclature of vegetation types There are inconsistencies in naming vegetation types between different classifications or within the same classification (e.g., using common names or botanical names, species order in two/three-species mixed forest etc.). Hence, EFTMP requires to standardize the forest/vegetation classification by applying a consistent approach in terms of vegetation formation, species dominance, species naming, and the use of classifiers as described below. #### (i) Naming of vegetation formations Various names for vegetation formation have been used in the past assessments; for example, forest, wood, woodland, shrubland, dwarf shrubland, scrub, thicket, dwarf thicket, steppe, savannah, grassland, meadow, mat, and cushion community. EFTMP will follow the EcoVeg approach while naming the vegetation formations as follows: - i) forest/woodland (for forest, wood, woodland), - ii) shrubland/scrub (for scrub, shrubland, dwarf shrubland, thicket, dwarf thicket, steppe), and - iii) grassland/savanna (for savannah, grassland, meadow, mat). iv) other (appropriate names for rock and scree vegetations) #### (ii) Determining species dominance The past assessments have named a vegetation type based primarily on the dominance of species in a vegetation unit [for all vegetation formations, i.e. forest (trees), shrubland, and grassland]. However, except DFRS (2014, 2015), all of them have determined species dominance based on the qualitative judgement. For EFTMP, the plot data will be quantitatively analysed to determine the floristic composition and growth form. Hence, adapting to DFRS (2014), the following rules will apply to assess species dominance and name a forest type accordingly. - A forest with >/=60% dominance of basal area of a species will be named after that species; e.g. Shorea robusta Forest. - A forest with two or more species having <60% but >/=33% dominance of basal area will be named after all those species following alphabetical orders; e.g. Dalbergia sissoo-Senegalia catechu Forest, Acer-Aesculus-Juglans Forest. - A forest with only one species having <60% but >/=30% dominance of basal area will be named to show that species mixed with others; e.g. *Shorea robusta*-Tarai Mixed Broadleaved Forest. In the case of shrublands/scrubs and grasslands, the percentage of crown cover will be considered for determining species dominance. #### (iii) Naming of species-specific forests Different assessments have used varying naming protocols for species-specific forests, as one can see in the previous tables. For EFTMP, the full botanical name of a species will be used in naming a species-specific forest type, e.g. Pinus *roxburghii* Forest, *Quercus incana-Quercus lanuginosa* Forest, *Dalbergia sissoo-Senegalia catechu* Forest. However, if more than one species of a genus constitutes the forest type, the name contains genus only, e.g. *Quercus* forest, *Acer-Aesculus-Juglans* forest. Common English names and Nepali names will also be provided while reporting. Alphabetical order will be followed for a mix of two or more species. #### (iv) Use of classifiers Different classifiers (bioclimatic, biogeographic, microclimatic, physiographic etc.) have been used previously for forest/vegetation classifications. The EFTMP will apply the following rules for using classifiers for forest/vegetation types. - No classifier (e.g., Tarai, Chure or Middle Hills, tropical or sub-tropical, eastern, central or western etc.) will apply in a species-specific forest type; for example, 'Shorea robusta forest' for that type found elsewhere. - Bioclimatic [adapting to TISC's (2002) bioclimatic divisions] and morphological classifiers will apply in a mixed forest type, e.g. Tropical Mixed Broadleaved Forest, Warm Temperate Mixed Broadleaved Forest. - A biogeographic classifier (western/central/eastern) will apply only if it requires differentiating two mixed types in the same bioclimatic range. - The terms 'broadleaved' and 'conifer' will apply to denote hardwood and pine/needle-leaved forests, respectively. - No classifier will apply for a natural stand or plantation. Other classifiers, such as microclimatic (e.g. riverine), deciduous/evergreen etc., will apply if it requires differentiating mixed types through them. ### 5.3 Proposed vegetation types Based on the review of the past assessments and consultation with experts, a new vegetation typology has been proposed based on species composition/association. It comprises a total of 69 vegetation types (forest and woodland - 54, scrub/shrubland - 6, grassland - 9) (Table 18). The vegetation type mapping will be initiated using this typology. Various attributes of forest and grassland types, given in their definitions, can be used for stratification for sampling and mapping. The vegetation types that might be missing from this list but identified later during mapping exercise or field survey will be added later. Also, two or more vegetation types may need to be merged during the mapping exercise. Table 18: Proposed vegetation typology for the forest and grassland type mapping | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | | |-----|--|--|--------------------------|--------|--| | For | Forest types (Nepalese names in brackets) | | | | | | 1 | Tectona grandis
Forest [Teak Ban] | A plantation forest predominated by <i>Tectona grandis</i> , found in the tropical zone [such as Chiliya (Rupandehi) Tamagadhi (Bara), Sagarnath (Sarlahi) and Ratuwamai (Jhapa)] | Below
300 | Te.gr | | | 2 | Eucalyptus Forest
[Masala Ban] | A plantation forest predominated by <i>Eucalyptus species</i> , found in the tropical zone [such as Ratuwamai and Sagarnath area) | Below
300 | Eu.sp | | | 3 | Tropical Mixed
Broadleaved
Forest [Usna
Pradeshiya Misrit
Chaudapate Ban] | A tropical mixed broadleaved forest having common species like Shorea robusta, Terminalia species, Butea frondosa, Anogeissus latifolia, Adina cordifolia, Aegle marmelos, Lannea grandis, Duabanga grandiflora, Dilenia pentagyna, and Lagerstroemia parviflora, but without predominance of a particular species (no single species having equal to or above 60% of the total basal area) | Below
1000 | TMBF | | | 4 | Tropical Evergreen
Riverine Forest
[Usna Pradeshiya
Nadi Tatiya
Sadabahar Ban] | A tropical mixed evergreen forest having common species like Michelia champaca, Eugenia jambolana, Phoebe lanceolata, Mangifera sylvatica, Diospyros species, Machillus villosa, Acer oblongum, Bassia buryraceae, Xylosma longifolium, Ormosia glauca, with some deciduous trees like Cedrela toona, Albizzia species, Acrocarpus fraxinifolius, Garuga pinnata and Duabanga sonneratioides, found along water courses in the Tarai, Bhabar, Dun valleys and Churia hills. Castanopsis tribuloides, C. indica, Quercus glauca can occur above 2000 ft. | Below
1000 | TERF | | | 5 | Shorea robusta
Forest [Sal Ban] | A tropical deciduous broadleaved forest predominated by <i>Shorea robusta</i> (with its basal area equal to or above 60%). | Below
1200 | Sh.ro | | | 6 | Dalbergia sissoo-
Senegalia catechu
Forest [Sisau-Khair
Ban] | A tropical deciduous broadleaved forest co-dominated by <i>Acacia catechu</i> and <i>Dalbergia sissoo</i> (both combinedly having equal or over 60% of the total basal area), found in the riverine habitats, specifically on the relatively new floodplains along the large rivers | Below
1200 | Ds-Sc | | | | | | | | | | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | |----|--
--|--------------------------|--------| | 7 | <i>Terminalia</i> Forest
[Asna Ban] | A tropical to subtropical deciduous broadleaved forest pre-dominated by <i>Terminalia species</i> , i.e. <i>T. tomentosa</i> , <i>T. chebula</i> , <i>T. belerica</i> , <i>T. myriocarpa</i>) (with its basal area equal to or above 60%), common associates being <i>Eugenia jambolana</i> , <i>Lagerstroemia parviflora</i> , <i>Dillenia pentagyna</i> , <i>Adina cordifolia and Cedrela toona</i> , common in the Churia and Duns. | Below
1200 | Term | | 8 | <i>Anogeissus</i>
<i>latifolia</i> Forest
[Banjhi Ban] | A tropical to subtropical deciduous broadleaved forest pre-dominated by <i>Anogeissus latifolia</i> | | An.la | | 9 | Tropical Deciduous Riverine Forest [Usna Pradeshiya Nadi Tatiya Patjhar Ban] | A tropical deciduous mixed broadleaved forest having common species like <i>Bombax ceiba</i> , <i>Holoptelea integrifolia</i> , <i>Schleichera trijuga</i> , <i>Ehretia laevis</i> , <i>Trewia nudiflora</i> and <i>Garuga pinnata</i> , found on the old river terraces. | Below
1400 | TDRF | | 10 | Pinus roxburghii
Forest [Khote
Salla Ban] | A subtropical evergreen conifer forest predominated by
Pinus roxburghii (with its basal area equal to or above 60%), found mostly on the south-facing slopes. | 500-2000 | Pi.Ro | | 11 | Albizia julibrissin-
Toona ciliata
Forest [Siris-Tooni
Ban] | A tropical to subtropical, partly deciduous and dominantly evergreen broadleaved forest co-dominated by <i>Albizia jilibrissin</i> and <i>Toona ciliata</i> (both combinedly having equal to or above 60% of the total basal area), found in the riverine habitats in the eastern and central regions | 600-1700 | Al-To | | 12 | Subtropical Mixed
Broadleaved
Forest | A subtropical evergreen broadleaved forest having common species like Eugenia tetragona, E. ramosissima, Ostodes paniculata, Drimycarpus racemosus, Lithocarpus spicata, Acer thomsonii, A. oblungum, Machilus species, Castanopsis indica, C. tribuloides, Phoebe lanceolata, Cryptocarya amygdalina, Cinnamomum species, Turpinia nepalensis, Bassia butyraceae, Helicia erratica, Macaranga pustulata, Alnus nepalensis, Erythrina suberosa, Cedrela toona, Albizzia lebbek, A. chinensis, Schima wallichii, Leucosceptrum canum, Eurya acuminata, Talauma hodgsonii, Symplocos spicata, Laportea sinuata, Miliusa macrocarpa, Mahonia napaulensis, Caseria graveolens, Amoora decandra, found east of the Tamur valley | 900-1700 | SMEF | | 13 | Castanopsis-
Schima Forest
[Katus-Chilaune
Ban]
(also, Castanopsis
Forest, Schima
Forest separately
if any) | A subtropical evergreen broadleaved forest co-dominated by <i>Castanopsis species</i> and <i>Schima wallichii</i> (both combinedly having equal to or above 60% of the total basal area). [Pure forests of Castanopsis or Schima will be considered if any of them predominates the forest] | 1000-
2000 | Ca-Sc | | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | |----|---|---|--------------------------|--------| | 14 | Pinus roxburghii-
Shorea robusta
Forest [Khote
Salla-Sal Ban] | A subtropical mixed broadleaved-conifer forest co-
dominated by <i>Shorea robusta</i> (broadleaved) and <i>Pinus</i>
<i>roxburghii</i> (conifer) (each having 33-60% of the total basal
area), found specifically in the Churia region. | | Pr-Sr | | 15 | Pinus roxburghii-
Mixed
Broadleaved
Forest [Khote Salla
Misrit Chaudapate
Ban] | A subtropical mixed broadleaved-conifer forest dominated by <i>Pinus roxburghii</i> (<i>Pinus roxburghii</i> having 33-60% of the total basal area), common associates being <i>Quercus incana</i> , <i>Q. lanata</i> , <i>Rhododendron arboreum</i> , <i>Lyonia ovalifolia</i> (in the west), <i>Schima wallichii</i> (in the central and eastern region), <i>Engelhardtia spicata</i> and <i>Erythrina stricta</i> . | 1000-
2000 | Pr-MBF | | 16 | <i>Olea</i> Forest [Jaitun
Ban] | A subtropical evergreen broadleaved forest predominated
by <i>Olea species</i> (with its basal area equal to or above
60%), found in the dry valley bottoms and lower slopes in
the Bheri valley | 1000-
2100 | Olea | | 17 | Alnus Forest [Uttis Ban] (Alnus nepalensis forest, Alnus nitida forest, if the latter has large enough area to be delineated separately) | A subtropical deciduous broadleaved forest predominated by <i>Alnus species</i> (with its basal area equal to or above 60%), found along streams and moist mudflows (<i>Alnus nitida</i> in Mugu Karnali and <i>Alnus nepalensis</i> elsewhere) | 1000-
2450 | Alnus | | 18 | Quercus incana
Forest [Banjh Ban] | A subtropical evergreen broadleaved forest predominated
by <i>Quercus incana</i> (with its basal area equal to or above
60%), found specifically west of the Karnali river | 1200-
2400 | Qu.in | | 19 | Rhododendron
arboreum Forest
[Lali Gurans Ban] | A temperate evergreen broadleaved forest predominated by <i>Rhododendron arboreum</i> (with its basal area equal to or above 60%), commonly found as a single-storeyed, mono-specific, even-aged and closed forest, mostly on southern exposure. | 1200-
4000 | Rh.ar | | 20 | <i>Quercus lanata</i>
Forest [Thulo
Banjh Ban] | A subtropical evergreen broadleaved forest predominated by <i>Quercus lanata</i> (with its basal area above 60%), found in the central and eastern mountains | 1500-
2400 | Qu.ln | | 21 | Quercus incana
- Quercus Ianata
Forest [Banjh Ban] | A mixed evergreen forest co-dominated by Quercus incana and Q. lanata (each having 33-60% of the total basal area) | 1650-
2400 | Qi-QI | | 22 | <i>Pinus patula</i>
Forest [Pate Salla
Ban] | A plantation forest dominated by <i>Pinus patula</i> , found in
the subtropical and temperate zones (specifically in Kavre
Palanchok and Sindhupalchok districts) | 1500-
2500 | Pi.pa | | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | |----|--|---|--------------------------|--------| | 23 | Warm Temperate
Mixed
Broadleaved
Forest [Tallo
Samshitoshna
Misrit Chaudapate
Ban] | A temperate mixed, mostly evergreen, broadleaved forest having common species like Machilus duthiei, M. odoratissima, M. sericea, Phoebe lanceolata, P. pollida, Cinnamomum tamala, Actinodaphne reticulata, Lindera bifaria, L. neesiana, Litsea oblonga, L. citrata, Neolitsea umbrosa, N. lanuginosa, Michelia kisopa, Lithocarpus spicata, Quercus glauca, Castanopsis tribuloides, Betula alnoides, Alnus nepalensis, Dalbergia hircina, Albizzia mollis, Acer oblongum, Cedrela toona, Juglans regia, Ehretia macrophylla, Engelhardtia spicata, Schima wallichii, Michelia doltsopa, Cucklandia populnea, Carpinus viminea, Acer thomsonii. The second canopy consists of Lindera pulcherrima, Neolitsea umbrosa, Dodecadenia grandiflora, Eriobotrya elliptica, Sapium insigne, Daphnephyllum himalayense, Macaranga denticulata, M. pustulata, Myrsine semiserrata, Symplocos theaefolia, S, ramosissima, Prunus undulata, Rhododendron arboreum, Sarauja napaulensis etc. | 1500-
2200 | LTMB | | 24 | <i>Quercus lamellosa</i>
Forest [Thulo
Phalant Ban] | A temperate evergreen broadleaved forest predominated
by <i>Quercus lamellosa</i> (with its basal area above 60%),
found in the eastern mountains | 1600-
2800 | Qu.lm | | 25 | Pinus wallichiana
Forest [Gobre
Salla Ban] | A temperate to subalpine evergreen conifer forest, predominated by <i>Pinus wallichiana</i> (with its basal area above 60%), found mostly on sunny slopes | 1600-
3600 | Pi.wa | | 26 | Pinus wallichiana-
Quercus Species
Forest
[Gobre
Salla-Khasru Ban] | A mixed broadleaved-conifer forest co-dominated by
Pinus wallichiana and Quercus species. | | Pw-Qs | | 27 | Juglans regia
Forest [Okhar Ban] | A temperate deciduous broadleaved forest predominated
by <i>Juglans regia</i> (with its basal area above 60%), found
on moist sites, specifically in Jagadulla Municipality,
Dolpa district | 1800-
2800 | Ju.re | | 28 | Cedrus deodara
Forest [Devdar
Ban] | A temperate evergreen conifer forest predominated by
Cedrus deodara (with its basal area above 60%), found on rocky slopes of inner valleys in western mountains | 1800-
3000 | Ce.de | | 29 | Acer-Aesculus
Forest [Phirphire-
Pagre Ban] | A temperate deciduous broadleaved forest co-dominated
by <i>Acer species</i> and <i>Aesculus indica</i> (both combinedly
having equal to or above 60% of the total basal area),
found on shady slopes along streams in the western
mountains | 1800-
3100 | Ac-Ae | | 30 | <i>Quercus floribunda</i>
Forest [Seto
Khasru Ban] | A subalpine deciduous broadleaved forest predominated by <i>Quercus floribunda</i> (with its basal area above 60%), found on shady slopes | 1900-
2900 | Qu.fl | | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | |----|--|--|--------------------------|--------------| | 31 | Hippophae
salicifolia Forest
[Dale Chuk Ban] | A temperate to subalpine deciduous broadleaved forest predominated by <i>Hippophae salicifolia</i> (with its basal area above 60%), found mainly on river gravels of the rainshadowed inner valleys | 2000-
3400 | Hi.sa | | 32 | Pinus wallichiana-
Abies species
Forest | A mixed conifer forest co-dominated by <i>Pinus wallichiana</i> and <i>Abies species</i> | | Pw-As | | 33 | Abies pindrow
Forest | A temperate to subalpine evergreen conifer forest predominated by <i>Abies pindrow</i> (with its basal area above 60%), found in the western mountains | 2000-
3500 | Ab.pi | | 34 | Abies-Quercus-
Tsuga Forest | A mixed broadleaved-conifer forest having <i>Abies species</i> , <i>Quercus species</i> and <i>Tsuga dumosa</i> . | | Ab-Qu-
Ts | | 35 | Abies-Quercus-
Rhododendron
Forest | A mixed broadleaved-conifer forest having <i>Abies species</i> , <i>Quercus species</i> and <i>Rhododendron species</i> . | | Ab-Qu-
Rh | | 36 | Tsuga dumosa
Forest | A temperate evergreen conifer forest predominated by
Tsuga dumosa (with its basal area above 60%), found generally on the southern slope in the west and northern slopes of the inner valleys in the eastern region | 2100-
3000 | Ts.du | | 37 | Picea smithiana
Forest | A temperate evergreen conifer forest predominated by <i>Picea smithiana</i> (with its basal area above 60%), found on the shady slopes in the central and western mountains | 2100-
3600 | Pi.sm | | 38 | Populus ciliata
Forest [Bhote
Pipal Ban] | A temperate to subalpine deciduous broadleaved forest predominated by <i>Populus ciliata</i> (with its basal area above 60%), found in the riverine habitats of the inner valleys west of the Trishuli river | 2100-
3600 | Po.ci | | 39 | Quercus
semecarpifolia
Forest [Khasru
Ban] | A temperate evergreen broadleaved forest predominated
by <i>Quercus semecarpifolia</i> (with its basal area above
60%), found mostly on southern slopes | 2200-
3500 | Qu.se | | 40 | Quercus
semecarpifolia-
Rhododendron
species Forest
[Khasru-Gurans
Ban] | A mixed forest co-dominated by <i>Quercus semecarpifolia</i> and <i>Rhododendron species</i> | | Qs-Rs | | 41 | Lithocarpus
pachyphylla Forest
[Arkhaulo Ban] | A temperate evergreen broadleaved forest predominated by <i>Lithocarpus pachyphylla</i> (with its basal area above 60%), found on the south-facing slope in the eastern mountains | 2400-
2900 | Li.pa | | 42 | Acer-Magnolia
Forest | An upper temperate deciduous broadleaved forest co-
dominated by <i>Acer species</i> and <i>Magnolia campbelli</i> (each
having 33-60% of the total basal area), found on steep
humid slopes in the eastern mountains | 2500-
3000 | Ac-Ma | | | | | | | | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | |----|--|---|--------------------------|--------| | 43 | Cool Temperate Mixed Broadleaved Forest [Mathillo Samshitoshna Misrit Chaudapate Ban] | A mixed forest if not co-dominated by <i>Acer</i> and <i>Magnolia</i> species or <i>Acer</i> and <i>Rhododendron</i> species between 2500 and 3000 m. | | UTMB | | 44 | Cupressus
torulosa Forest
[Raj Salla Ban] | A temperate evergreen conifer forest predominated by
Cupressus torulosa (with its basal area above 60%), found
in western mountains | 2500-
3200 | Cu.to | | 45 | Acer-
Rhododendron
Forest [Phirphire-
Gurans Ban] | An upper temperate mixed broadleaved forest co-
dominated by <i>Acer species</i> and <i>Rhododendron arboreum</i>
(each having 33-60% of the total basal area), found in the
eastern region, specifically in the Arun and Tamor valleys | 2600-
3000 | Ac-Rh | | 46 | Rhododendron
hodgsonii Forest | A subalpine evergreen broadleaved forest predominated by <i>Rhododendron hodgsonii</i> (with its basal area above 60%), found as a low to dwarf, gnarled, single-storeyed forest rich in bryophytes or lichen epiphytes on the wet slopes in the eastern region | 3000-
4000 | Rh.ho | | 47 | Abies pindrow-
Abies spectabilis
Forest | A mixed forest co-dominated by Abies pindrow and Abies spectabilis. | | Ap-As | | 48 | Abies spectabilis
Forest | A subalpine evergreen conifer forest predominated by
Abies spectabilis (with its basal area above 60%) | 3000-
4200 | Ab.sp | | 49 | Juniperus recurva
Forest | A subalpine evergreen conifer forest predominated by
Juniperus recurva (with its basal area above 60%), found
on the south-facing rocky cliffs | 3000-
4300 | Ju.re | | 50 | Abies densa forest | A subalpine evergreen conifer forest predominated
by <i>Abies densa</i> (with its basal area above 60%), found
particularly in Tamor valley | 3000-
4350 | Ab.de | | 51 | Larix Forest (Larix himalica forest and Larix griffithiana forest, separately if possible) | A subalpine deciduous conifer forest predominated by
Larix species (with its basal area above 60%), found on
rocky slopes of deep valleys in the eastern mountains
(Larix himalica in Shiar Khola, Langtang, upper Trisuli, and
Larix griffithiana from Rolwaling to the southeastern inner
valleys) | 3000-
4100 | Larix | | 52 | Juniperus indica
Forest [Dhupi Ban] | A subalpine evergreen conifer forest predominated by
Juniperus indica (with its basal area above 60%), found
on the rocky slopes of inner valleys | 3000-
4500 | Ju.in | | 53 | Betula-
Rhododendron
Forest [Bhojpatra-
Gurans Ban] | A mixed forest co-dominated by <i>Betula utilis</i> and <i>Rhododendron species</i> | | Be-Rh | | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | |------|--|--|--------------------------|--------| | 54 | <i>Betula utilis</i> Forest
[Bhojpatra Ban] | A subalpine deciduous broadleaved forest predominated
by <i>Betula utilis</i> (with its basal area above 60%), found
around tree line | 3600-
4200 | Be.ut | | Shr | ubland (other wooded | l land) types | | | | 55 | Caragana
sukiensis Scrub | A temperate to subalpine shrubby vegetation formation dominated by <i>Caragana sukiensis</i> (with its crown coverage above 60% of the total vegetation cover), found on southern exposures of the inner valleys west of Langtang (largest stand in the upper Langtang Valley) | 2400-
3700 | Csuk | | 56 | Caragana
gerardiana Scrub | A temperate to subalpine spiny cushion vegetation formation dominated by <i>Caragana gerardiana</i> (with its crown coverage above 60% of the total vegetation cover), found on gravel terraces in the lower range of the Trans-Himalayan region | 2600-
3900 | Cger | | 57 | Hippophae
tibetana Scrub | A subalpine to alpine shrubby vegetation dominated by <i>Hippophae tibetana</i> (with its crown coverage above 60% of the total vegetation cover), found in the riverine habitats of the Trans-Himalayan region | 3500-
5000 | Htib | | 58 | Rhododendron
Scrub [Guransko
Jhadi] | An alpine vegetation dominated by <i>Rhododendron species</i> in their shrubby and dwarf forms (with its crown coverage above 60% of the total vegetation cover), found on moist slopes | 3700-
4400 | RS | | 59 | Juniperus Scrub
[Dhupiko Jhadi] | An alpine vegetation dominated by <i>Juniperus species</i> in their dwarf forms (with its crown coverage above 60% of the total vegetation cover), found on dry slopes | 3700-
5000 | JS | | 60 | Caragana
versicolor Scrub | A subalpine to alpine spiny cushion
vegetation formation dominated by <i>Caragana versicolor</i> (with its crown coverage above 60% of the total vegetation cover), found on the sandy and silt-rich mineral soils of gentle slopes in the upper range of the Trans-Himalayan region | 4400-
5000 | Cver | | Gras | ssland types | | | | | 61 | Tropical Savannah
[Ushna Pradeshiya
Ghanse Maidan] | A tropical grassland dominated by Saccharum-Phragmatis association, in which trees such as Bombax ceiba, Albizia chinensis and Trewia nudiflora are often present, found on the old, consolidated flood plains (For example, in parts of Koshi Tappu, Shuklaphanta, and Chitwan National Park) | Below
300 | TS | | 62 | Tropical Riverine
Grassland [Ushna
Pradeshiya Nadi
Tatiya Ghanse
Maidan] | A tropical tall dense grassland dominated by Saccharum spontaneum, Narenga porphyrocoma and Themeda arundinacea, found on the recent flood plains (seasonally flooded area) along the large rivers in the Tarai, Bhabar and Duns. Phragmites karka, Narenga porphyrocoma and Arundo donax prevail in year-round waterlogged sites. | Below
400 | TRG | | SN | EFTMP Vegetation
Type | Operational definition | Altitude
range
(m) | Symbol | |----|--|--|--------------------------|--------| | 63 | Tropical Hill
Grasslands | Grasslands found in Churia hills (specific types to be identified through field survey) | 400-1000 | THG | | 64 | Subtropical
Grasslands | Grasslands found in sub-tropical region (specific types to be identified through field survey) | 1000-
2000 | SG | | 65 | Temperate
Grasslands | Grasslands found in temperate region (specific types to be identified through field survey) | 2000-
3000 | TG | | 66 | Pioneer plant
successions in
glacial forelands | The recently exposed fluvo-glacial sands, gravels and boulders colonized by alpine vegetation, such as carpets of mosses (Bryum spp), Lichens (Gyalidea scutellaris, Stereocaulon spp), Rosettes of Epilobium spp, Senecio albopurpureus, carpets of Stellaria decumbens, and the creeping mat-forming dwarf shrubs of Myricaria species and Oxyria digyna | 3520-
4000 | PPSG | | 67 | Kobresia
nepalensis
Grasslands | An alpine land covered by <i>Kobresia nepalensis</i> , found on humid southern exposure, specifically in the eastern region | 3600-
5000 | Ko.ne | | 68 | Upper Alpine
Grasslands | A high alpine herbaceous vegetation formation dominated by grass species like <i>Carex species</i> , <i>Calamogrostis species</i> , <i>Agrotis micantha</i> and <i>Festuca leptogonum</i> , found mostly on the south faces of the main Himalaya | 4500-
5000 | UAM | | 69 | Kobresia pygmaea
Grasslands | A high alpine land covered by smooth mats of <i>Kobresia</i> pygmaea (the smallest of the High Asian Cyperaceae), forming a uniform lawn with up to 95% plant cover, found on the moraine slopes in the headwaters of the inner valleys and the rolling hills in the arid zone | 4700-
5100 | Ко.ру | Source: Stainton (1972), Dobremez (1976), Jackson (1994), TISC (2002), FRA/DFRS (2014), Miehe et al. (2019) Note: 1. "Inner valley" are the valleys in the rain shadowed area that drain southwards, mostly between 2500 and 4500m. 2. Nepali names for all forest types will be given/confirmed once the field data are collected. 3. Formation types (e.g. forest/woodland, shrubland/scrub, grassland/savanna etc.) will be revised appropriately according to the EcoVeg classification approach based on field data. The equivalences of the proposed EFTMP vegetation types and that presented by previous studies are given in Annex 1. ## 6. Conclusion The review showed that Nepal's vegetation assessments and classifications have commenced in the early 1950s following the botanical explorations for collecting new species in the pristine Himalayan region. Stainton (1972) and Dobremez et al. (1969-1985) extensively conducted field visits along the various ecological transects and classified the vegetations on the physiographic regions. Miele et al. (2015) classified Nepal's vegetation based on the four decades of ecological observations and past studies. Other classifications such as Jackson et al. (1994), BPP (1996), TISC (2002) and DFRS (2014, 2015) were largely derived from Stainton (1972) and Dobremez's vegetation classification and mapping. However, these vegetation classifications have presented inconsistencies in vegetation formation, number of vegetation types and naming of the vegetation communities across the country. Therefore, EFTMP is commissioned to classify Nepal's vegetation based on the field surveys and assessing the vegetation formation, species composition, growth forms and floristic pattern in all physiographic and climatic regions. The vegetation classification approaches, data collection methods used, and the naming of vegetation types by the past vegetation assessments have significant implications for Nepal's vegetation classification by EFTMP for field survey methodology and nomenclature of vegetation types. A total of 69 vegetation types, including 54 forest/woodland types, six shrubland/scrub types, and nine grassland/savanna types, have been proposed based on the analysis of the past studies and the secondary data. After completing the field survey and the plot data analysis, the proposed vegetation types will be revisited and updated, providing a full list of vegetation types of Nepal. Furthermore, the physiognomy, biogeography, and formations will be examined for the vegetation types and retrospectively identified the mid-level hierarchy of the IVC framework. Some key departures from the past vegetation assessments have been proposed for EFTMP. First, it follows the IVC's EcoVeg approach to vegetation classification. Second, it collects data and information from an extensive field survey along the north-south transects, systematically distributed from east to west, and from the purposively selected transects/observation plots at some vegetation hotspots. Third, vegetation map will be based on the existing vegetation. Fourth, it applies a geospatial approach to vegetation classification and mapping, using the field plot data as training data set to classify satellite imagery applying machine learning algorithms. This wall-to-wall vegetation map enables monitoring and updating vegetation types over time and space. ## References - Addicott, E., Neldner, V. J., and Ryan, T. (2021). Aligning quantitative vegetation classification and landscape scale mapping: updating the classification approach of the Regional Ecosystem classification system used in Queensland. Australian Journal of Botany. Special Issue, https://doi.org/10.1071/BT20108 - Barnekow Lillesø, J-P., Shrestha, T. B., Dhakal, L. P., Nayaju, R. P., & Shrestha, R. (2005). The map of potential vegetation of Nepal: a forestry/agro-ecological/biodiversity classification system. Hørsholm: Center for Skov, Landskab og Planlægning/Københavns Universitet. Development and Environment, No. 2/2005 - Biodiversity Profiles Project (BPP) (1996). An assessment of the Representation of the Terrestrial Ecosystems within the Protected Areas System of Nepal. Biodiversity Profiles Project Publication No. 15. Department of National Parks and Wildlife Conservation. Ministry of Forests and Soil Conservation. His Majesty's Government of Nepal. Kathmandu. - Byers, A. C., Byers, E. A., and Thapa, D., (2014). Conservation and Restoration of Alpine Ecosystems in the Upper Barun Valley, Makalu-Barun National Park, Nepal. The Mountain Institute Technical Report No. 2014.11, pages 100. - DFRS (2014). Standard Guidelines for Forest Cover and Forest Types Mapping (Technical Document No. 2). Forest Resource Assessment Nepal, Department of Forest Research and Survey, Kathmandu. - DFRS (2015). State of Nepal's Forests. Forest Resource Assessment (FRA) Nepal, Department of Forest Research and Survey (DFRS). Kathmandu, Nepal. - Dobremez, J. F. (1976). Le Ne´pal: E´cologie et Bioge´ographie [Ecology and Biogeography of Nepal]. Centre Nationale de la Recherche Scientifique, Paris, France. - DoEE (2017) National Vegetation Information System home page. Australian Government, Department of the Environment and Energy, Canberra. URL: http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system. - Faber-Langendoen, D., Keeler-Wolf, T., Meidninger, D., Tart, D., Hoagland, B., Josse, C., Navarro, G., Ponomarenko, S., Saucier, J-P., Weakley, A., and Comer, P. (2014). EcoVeg: a new approach to vegetation description and classification. Ecological Monographs, 84(4), pp. 533-561. - Faber-Langendoen, D.; Keeler-Wolf, T.; Meidinger, D.; Josse, C.; Weakley, A.; Tart, D.; Navarro, G.; Hoagland, B.; Ponomarenko, S.; Fults, G.; Helmer, E. (2016). Classification and description of world formation types. Gen. Tech. Rep. RMRS-GTR-346. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 222 p. - Faber-Langendoen, D., Peet, R., Meidinger, D., and Keeler-Wolf, T. (2017). The EcoVeg approach in the Americas: U.S., Canadian and International Vegetation Classifications. Phytocoenologia, DOI: 10.1127/phyto/2017/0165 - Faber-Langendoen, Don., Navarro, G., Willner, W., Keith, D. A., Liu, C., Guo, K., and Meidinger, D. (2020). Perspectives on Terrestrial Biomes: The International Vegetation Classification. In book: Reference Module in Earth Systems and Environmental Sciences, 10.1016/B978-0-12-409548-9.12417-0. - Gellie, NJH, Hunter, JT, Benson, JS, Kirkpatrick, JB, Cheal, DC, McCreery, K and Brocklehurst, P (2018). 'Overview of
plot-based vegetation classification approaches within Australia', *Phytocoenologia*, vol. 48, no. 2, pp. 251-272, doi: 10.1127/phyto/2017/0173. - H. G. Champion (1936). Preliminary survey of the forest types of India and Burma. Indian Forest Records (New series), *Sliviculture*, Vol I. Government of India Press, New Delhi. - Jackson J. K. (1994). Manual of Afforestation in Nepal (Volume 1, 2). Forest Research and Survey Centre, Kathmandu. - Miehe, G., Miehe, S., Böhner, J., Bäumler, R., Ghimire, S. K., Bhattarai, K., Chaudhary, R. P., Subedi, M., Jha, P. K. & Pendry, C. (2015). Vegetation Ecology (Chapter 16). In Miehe, G., Pendry, C. & Chaudhary, R. P. (Eds.), Nepal: An introduction to the natural history, ecology and human environment of the Himalayas (pp. 7-16). Edinburgh: Royal Botanic Garden Edinburgh. - Municha (1997). Classification of vegetation: Past, present and future. Journal of Vegetation Science, 8, pp. 751-760. - Nemani, R. and Running, S. W., (1996). Implementation of a hierarchical global vegetation classification in ecosystem function models. Journal of Vegetation Science, 7, pp 337-346. - Osmaston, A. E., (1927). Forest Flora for Kumaon. Government Press, Allahabad. - Sayre, R., P. Comer, J. Hak, C. Josse, J. Bow, H. Warner, M. Larwanou, E. Kelbessa, T. Bekele, H. Kehl, R. Amena, R. Andriamasimanana, T. Ba, L. Benson, T. Boucher, M. Brown, J. Cress, O. Dassering, B. Friesen, F. Gachathi, S. Houcine, M. Keita, E. Khamala, D. Marangu, F. Mokua, B. Morou, L. Mucina, S. Mugisha, E. Mwavu, M. Rutherford, P. Sanou, S. Syampungani, B. Tomor, A. Vall, J. Vande Weghe, E. Wangui, and L. Waruingi (2013). A New Map of Standardized Terrestrial Ecosystems of Africa. Washington, DC: Association of American Geographers. 24 pages. - Schweinfurth, U. (1957). Die horizontale und vertikale Verbreitung der Vegetation in Himalaya. Bonn. Cited in Stainton (1972). - Schwienfurth, U. (1992). Mapping Moutains: Vegetation in the Himalaya. GeoJournal, 27.1, pp 73-83 - Shrestha, T. B. (2008). Classification of Nepalese Forests and Their Distribution in Protected Areas. The Initiation, Vol. 2(1). - Shrestha, T.B., Lillesø, J.P.B., Dhakal, L.P. and Shrestha, R. (2002). Forest and Vegetation Types of Nepal. Ministry of Forests and Soil Conservation, HMG/Nepal, Natural Resource Management Sector Assistance Programme (NARMSAP), Tree Improvement and Silviculture Component, Kathmandu, Nepal - Singers, J. D. and Rogers, G. M. (2014). A classification of New Zealand's terrestrial ecosystems. New Zealand Department of Conservation - Stainton, J. D. A. (1972). Forests of Nepal. John Murray. London. - TISC (2002). Forest and Vegetation Types of Nepal. Tree Improvement and Silviculture Component (TISC), Natural Resource Management Sector Assistance Programme, Ministry of Forest and Soil Conservation, pp 193. - Uddin, K., Shrestha, H. L., Murthy, M. S. R., Bajracharya, B., Shrestha, B., Gilani, H., Pradhan, S., Dangol, B. (2015). Development of 2010 national land cover database for Nepal. Journal of Environmental Management 148: 82-90. DOI: 10.1016/j.jenvman.2014.07.047 ## Annex 1: The proposed EFTMP vegetation types and their equivalents in the past assessments | Proposed
EFTMP types | Miehe et al.
(2015) | TISC (2002) | Jackson (1994) | Dobremez (1976) | Stainton (1972) | |---|--|--|---|--|--| | Forest Types | | | | | | | Tectona grandis
Forest | | | | | | | Eucalyptus
Forest | | | | | | | Tropical Mixed
Broadleaved
Forest | | Lower Tropical
Sal and Mixed
Broadleaved
Forest | | Shorea and Dillenia pentagyna forest; Shorea and Dillenia indica forest; Shorea robusta and Duabanga sonneratioides forest; Shorea and Terminalia tomentosa forests (Chure slopes, Eastern facies, Western facies) | | | Tropical
Evergreen
Riverine Forest | | Tropical
Evergreen
Forest (Sub-
type) | Other riverain forest | | Tropical
Evergreen Forest | | Shorea robusta
Forest | Shorea robusta
forest | Lower Tropical
Sal Forest
(Sub-type); Hill
Sal Forest | Shorea robusta
forest | Shorea robusta Forest; Shorea robusta and Cycas pectinata forest; Riparian forest with Shorea robusta and Mimosa rubicaulis | Sal Forest | | Dalbergia
sissoo-
Senegalia
catechu Forest | Dalbergia
sissoo-Acacia
catechu
riverine forest | Riverain Khair-
Sissoo Forest
(Sub-type) | Acacia catechu-
Dalbergia sissoo
forest | Riparian forest of
Dalbergia sissoo and
Acacia catechu | Dalbergia
sissoo-Acacia
catechu Forest | | <i>Terminalia</i>
Forest | Terminalia and
Anogeissus
forest | Terminalia
Forest (Sub-
type) | Terminalia-
Anogeissus
deciduous hill
forest | Shorea and Terminalia tomentosa forests (Chure slopes, Eastern facies) | <i>Terminalia</i>
Forest | | Anogeissus
latifolia Forest | Terminalia and
Anogeissus
forest | | Terminalia-
Anogeissus
deciduous hill
forest | Shorea and
Terminalia
tomentosa forest
(Western facies) | Subtropical
Deciduous Hill
Foerst | | Proposed
EFTMP types | Miehe et al.
(2015) | TISC (2002) | Jackson (1994) | Dobremez (1976) | Stainton (1972) | |---|---|--|--|--|--| | Tropical
Deciduous
Riverine Forest | Bombax
riverine forest | Tropical
Deciduous
Riverain Forest
(Sub-type) | Other riverain forest | | Tropical
Deciduous
Riverain Forest | | Pinus roxburghii
Forest | Pinus
roxburghii
forest | Chir Pine
Forest | Pinus roxburghii
forest | Pinus roxburghii
xerophilic forest | Pinus roxburghii
forest | | Albizia
julibrissin-Toona
ciliata Forest | Toona ciliata-
Albizia
julibrissin
riverine forest | Riverain forest
with <i>Toona</i> and
<i>Albizia</i> species | Riverain forest with
Toona and Albizia
species | Riparian forest of Cedrela toona- Albizia mollis; Hygrophilous forest of Lagersroemia parviflora | | | Subtropical
Mixed
Broadleaved
Forest | | Eugenia-
Ostodes Forest | | | Subtropical
evergreen forest;
Sub-tropical
Semi-evergreen
Hill Forest | | Castanopsis-
Schima Forest | Schima-
Castanopsis
forest | Schima-
Castanopsis
Forest | Schima-
Castanopsis forest | Mesohygrophilic
forest of Schima
wallichii-Castanopsis
indica (Annapurna
type, Central Nepal
type, East Nepal
type); Castanopsis
tribuloides forest | Schima-
Castanopsis
Forest;
Castanopsis
tribuloides-C.
hystrix forest | | Pinus roxburghii-
Shorea robusta
Forest | | | | | | | Pinus roxburghii-
Mixed
Broadleaved
Forest | | Chir Pine-
Broadleaved
Forest | | Mesophilic forest
of Schima wallichii-
Pinus roxburghii | | | Olea Forest | Olea ferruginea
woodlands | Olea Forest | | <i>Olea cuspidata</i>
Steppe | | | Alnus Forest | Alnus
nepalensis
riverine forest | Alder Forest
(Sub-type) | Alnus nepalensis
forest | Alnus nepalensis
forest | Alnus woods | | Quercus incana
Forest | | Lower
Temperate Oak
Forest | Forest of Quercus
leucotrichophora
and Q. lanata | Quercus incana
Forest | Quercus
incana-Q.
lanuginosa
Forest | | Proposed
EFTMP types | Miehe et al.
(2015) | TISC (2002) | Jackson (1994) | Dobremez (1976) | Stainton (1972) | |--|------------------------------------|--|---|--|---| | Rhododendron
arboreum Forest | Rhododendron
arboreum
forest | Rhododendron
Forest | Rhododendron
forest | Rhododendron
arboreum and Lyonia
ovalifolia forest;
Rhododendron
facies,
Rhododendron forest;
Rhododendron
subalpine forest | Rhododendron
Forest | | Quercus lanata
Forest | Quercus lanata
forest | Lower
Temperate Oak
Forest | Forest of Quercus leucotrichophora and Q. lanata | <i>Quercus lanata</i>
Forest | Quercus
incana-Q.
lanuginosa
Forest | | Quercus incana-
Quercus lanata
Forest | | Lower
Temperate Oak
Forest | Forest of Quercus
leucotrichophora
and Q. lanata | | Quercus
incana-Q.
lanuginosa
Forest | | Pinus patula
Forest | | | | | | | Warm Temperate Mixed Broadleaved Forest | | | Lower temperate
mixed broadleaved
forest, with
abundant
Lauraceae | Quercus glauca
forest | Lower
temperate mixed
broadleaved
forest | | Quercus
Iamellosa Forest | Quercus
lamellosa
forest | East Himalayan
Oak-Laurel
Forest | Quercus lamellosa
forest | Quercus lamellosa
and Lauraceous
forest; Quercus
lamellosa and
Castanopsis hystrix
forest | Quercus
Iamellosa Forest | | Pinus
wallichiana
Forest | Pinus
wallichiana
forest | Upper
Temperate
Blue Pine
Forest | Pinus wallichiana
forest
(lower type) | Pinus excelsa forest;
Pinus excelsa and
Juniperus indica
forest | Pinus excelsa
forest | | Pinus
wallichiana-
Quercus species
Forest | | Mixed Blue
Pine-Oak
Forest | | Quercus lanata-Pinus
excelsa forest | | | Juglans regia
Forest | | Deciduous
Walnut-Maple-
Alder Forest | | | Aesculus-
Juglans-Acer
forest | | Cedrus deodara
Forest | Cedrus
deodara forest | Cedar Forest | | Cedrus deodara
forest | Cedrus deodara
forest | | Acer-Aesculus
Forest | Aesculus-Acer
forest | Deciduous
Walnut-Maple-
Alder Forest | | | Aesculus-
Juglans-Acer
forest | | Proposed
EFTMP types | Miehe et al.
(2015) | TISC (2002) | Jackson (1994) | Dobremez (1976) | Stainton (1972) | |--|--------------------------------------|--|-------------------------------------|---|---| | Quercus
floribunda
Forest | Quercus
floribunda
forest | | Quercus floribunda
forest | Quercus glauca
forest | Quercus dilatata
Forest | | Hippophae
salicifolia Forest | Hippophae
riverine
woodlands | | | | Hippophae scrub | | Pinus
wallichiana-
Abies species
Forest | | Fir-Blue Pine
Forest | | | | | Abies pindrow
Forest | Abies pindrow
forest | Fir Forest | Upper temperate coniferous forest | Abies pindrow forest | Abies pindrow
forest | | Abies-Quercus-
Tsuga Forest | | Fir-Hemlock-
Oak Forest;
West
Himalayan Fir-
Hemlock-Oak
Forest | | | | | Abies-Quercus-
Rhododendron
Forest | | Fir-Oak-
Rhododendron
Forest | | Abies spectabilis
and Quercus
semecarpifolia
Forest | | | Tsuga dumosa
Forest | Tsuga dumosa
forest | | Upper temperate coniferous forest | Tsuga dumosa facies | Tsuga Dumosa
forest | | Picea smithiana
Forest | Picea
smithiana
forest | Spruce Forest | Upper temperate coniferous forest | Picea smithiana and
Pinus excelsa forest | Picea smithiana
forest | | Populus ciliata
Forest | | | | Riparian facies; Populus ciliata forest | Populus ciliata
woods | | Quercus
semecarpifolia
Forest | Quercus
semecarpifolia
forest | Temperate Mountain Oak Forest; Sub-alpine Mountain Oak Forest; Mountain Oak- Rhododendron Forest | Quercus
semecarpifolia
forest | Quercus
semecarpifolia
forests (West Nepal,
Typical facies,
Annapurna facies) | Quercus
semecarpifolia
forest | | Lithocarpus
pachyphylla
Forest | Lithocarpus
pachyphylla
forest | <i>Lithocarpus</i>
Forest | | Lithocarpus
pachyphylla forest | Lithocarpus
pachyphylla
forest | | Acer-Magnolia
Forest | | Deciduous
Maple-
Magnolia-
Sorbus Forest | | | Upper temperate
mixed
broadleaved
forest | | Proposed
EFTMP types | Miehe et al.
(2015) | TISC (2002) | Jackson (1994) | Dobremez (1976) | Stainton (1972) | |--|-------------------------------------|--|--|---|------------------------------------| | Cool Temperate
Mixed
Broadleaved
Forest | | | | Daphniphyllum
himalayense forest | | | Cupressus
torulosa Forest | Cupressus
torulosa forest | Cypress Forest | | Cupressus torulosa
Steppe | Cupressus
torulosa forest | | Acer-
Rhododendron
Forest | | Mixed
Rhododendron-
Maple Forest | Upper temperate
mixed broadleaved
forest | | | | Rhododendron
hodgsonii Forest | Rhododendron
hodgsonii
forest | | | Rhododendron
subalpine forest | Rhododendron
Forest | | Abies
pindrow-Abies
spectabilis
Forest | | | | | | | Abies
spectabilis
Forest | Abies
spectabilis
forest | Fir Forest | Abies spectabilis
forest | Abies spectabilis
forest (Typical
region) | Abies spectabilis
forest | | Juniperus
recurva Forest | Juniperus
recurva forest | Temperate
Juniper Forest | | | | | Abies densa
forest | Abies densa
forest | | | | | | <i>Larix</i> Forest | <i>Larix</i> forest | Larch Forest | | Larix potanini forest; Larix griffithiana forest; Larix potanini and L. griffithiana forest; The Himalayan Larch forest; Xerophillic forest of Larix potanini; Larix griffithiana hygrophilous forest | <i>Larix</i> forest | | Juniperus indica
Forest | Juniperus
indica forest | Temperate
Juniper Forest | Juniperus indica
steppe | Pinus excelsa and
Juniperus indica
forest; Juniperus
indica forest;
Juniperus indica
Steppe | Juniperus
wallichiana
forest | | Betula-
Rhododendron
Forest | | Birch-
Rhododendron
Forest | | | | | Proposed
EFTMP types | Miehe et al.
(2015) | TISC (2002) | Jackson (1994) | Dobremez (1976) | Stainton (1972) | |---------------------------------|---|--|----------------------|---|--------------------------------| | Betula utilis
Forest | Betula utilis
forest | | Betula utilis forest | Xerophilic forest
of Betula utilis;
Mesophilic forest of
Betula utilis (Typical
facies) | <i>Betula utilis</i>
Forest | | Shrubland/
scrub types | | | | | | | Caragana
sukiensis Scrub | Caragana
sukiensis
thickets | | | Caragana nepalensis
Steppe | | | Caragana
gerardiana
Scrub | Caragana
gerardiana
open dwarf
shrublands | Trans-
Himalayan
Lower
Caragana
Steppe | Caragana steppe | Caragana gerardiana
Steppe | | | Hippophae
tibetana Scrub | Hippophae
tibetana
riverine
dwarf thickets | | | | | | Rhododendron
Scrub | Rhododendron
thickets;
Rhododendron
dwarf thickets;
Rhododendron
lepidotum
shrublands | Moist Alpine
Scrub | Alpine vegetation | <i>Rhododendron</i>
heathland | Moist alpine
scrub | | Juniperus Scrub | Juniperus recurva thickets; Juniperus squamata dwarf shrublands | Dry Alpine
Scrub | Alpine vegetation | Mesophilic Junipers
heathland; <i>Juniperus</i>
<i>squamata</i> heathland | Dry alpine scrub | | Caragana
versicolor Scrub | Caragana
versicolor
open dwarf
shrublands | Trans-
Himalayan
Upper
Caragana
Steppe | Caragana steppe | | | | Grassland types | | | | | | | Tropical
Savannah | | Savannah/
Grasslands | Grassland | Large grass pseudo-
steppe | | | Tropical Riverine
Grassland | Riverine
grassland | Savannah/
Grasslands | Grassland | | | | Tropical Hill
Grasslands | | | | | | | Proposed
EFTMP types | Miehe et al.
(2015) | TISC (2002) | Jackson (1994) | Dobremez (1976) | Stainton (1972) | |---|---|-------------------------|----------------|---|-----------------| | Subtropical
Grasslands | Euphorbia
royleana
grasslands | | | | | | Temperate
Grasslands | | | | | | | Pioneer plant
successions
in glacial
forelands | Pioneer plant
successions in
glacial
forelands | | | Pioneer species
group on scree;
Pioneer species
group on torrential
gravels; Pioneer
species group on
moraines | | | Kobresia
nepalensis
Grasslands | Kobresia
nepalensis
Mats | | | | | | Upper Alpine
Grasslands | | Upper Alpine
Meadows | | Meadows on
the fine and
homogenous soil;
Vegetation on soil
with heterogenous
structure; Upper
Alpine Vegetation;
Alpine Meadows | | | Kobresia
pygmaea
Grasslands | Kobresia
pygmaea
dwarf Mats | | | | | **Note:** 1) Some vegetation types, such as *Rosa-Berberis-Cotoneaster* shrublands, Thickets and pastures, *Bamboo* thickets, Tall forb communities of cattle resting places, Alpine steppe, High alpine cushion communities and highest plant records, Salt meadows, Plant communities of wastelands, Crustose lichen covers of rock walls (Miehe et al. 2015), Trans-Himalayan High Alpine Vegetation (TISC 2002), and Mountain Heathland, Lower Alpine Meadow, Vegetation on Scree, Caragana brevispina Steppe, Caragana pygmaea and Lonicera spinosa Steppe, High Altitude isolated vegetation, and Xerophilic valley formations (Dobremez 1976) are excluded from the proposed vegetation typology. These will be included after the field survey if they are found significant for mapping. ## Forest Research and Training Centre Ecosystem and Forest Types Mapping Program (EFTMP) P.O. Box: 3339, Babarmahal P.O. Box: 3339, Babarmahal Kathmandu, Nepal Email: info@frtc.gov.np, Web: http://frtc.gov.np